[1]马 慧,许雪艳,毛雷鸣. 全介质超表面的研究进展与展望[J].湖北工业大学学报,2021,(2):34-38.
 MA Hui,XU Xueyan,Mao Leiming. Progress and Prospect of All-dielectric Metasurfaces[J].,2021,(2):34-38.
点击复制

 全介质超表面的研究进展与展望()
分享到:

《湖北工业大学学报》[ISSN:1003-4684/CN:42-1752/Z]

卷:
期数:
2021年第2期
页码:
34-38
栏目:
湖北工业大学学报
出版日期:
2021-04-22

文章信息/Info

Title:
 Progress and Prospect of All-dielectric Metasurfaces
文章编号:
1003-4684(2021)02-0034-05
作者:
 马  慧 许雪艳 毛雷鸣
 巢湖学院电子工程学院,安徽 巢湖 238000
Author(s):
 MA Hui XU Xueyan Mao Leiming
 School of Electronic Engineering, Chaohu University, Hefei 238000, China
关键词:
 全介质超表面 Mie共振 Fano共振 相位梯度
Keywords:
 all-dielectric metasurfacemie resonancefano resonancephase gradient
分类号:
O441.6
文献标志码:
A
摘要:
 随着光器件向纳米尺度发展,在纳米尺度内实现光的操控,对于小型化光学器件、构建纳米尺度的集成光路具有重要意义。全介质超表面在次波长尺度内可以实现波的振幅、相位和极化方式的控制,吸引越来越多研究者的关注,很多基于全介质超表面的光学元件被提出。详细介绍了几种重要类型全介质超表面的实现方式、及其功能和应用,并对全介质超表面的发展做了简单的展望。全介质超表面在光频段有很强的电响应和磁响应,及较小的能量损耗,为平面、超薄的光学设备提供了强大的平台。
Abstract:
 With the development of optical devices to nanoscale, it is important to manipulate light for miniaturized optical devices and constructing integrated optical path in nanoscale. Within the subwave length scale, all-dielectric metasurfaces can control the amplitude, phase and polarization mode of the incident wave. It attracts more and more researchers’ attention, and many optical devices based on all-dielectric metasurfaces have been proposed. This paper introduces the realization methods, functions and applications of several important types of all-dielectric metasurfaces in detail, and the development of all-dielectric metasurfaces is prospected. In a word, all-dielectric metasurfaces provide a powerful platform for highly efficient flat optical devices, owing to their strong electric and magnetic dipolar response accompanied by negligible losses in the optical frequency range.

参考文献/References:

[1] YU N F, Genevet,P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337.
[2]Li W H, Qiu T S, Wang J F, et al. Multi-domain functional metasurface with selectivity of polarization in operation frequency and time [J]. J. Phys. D: Appl. Phys., 2020, 53: 495003.
[3]Feiffer C P, Grbic A. Metamaterial Huygens’ surfaces: tailoringwave fronts with reflectionless sheets [J]. Phys Rev Lett., 2013, 110(19):197401.
[4]Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics[J]. Appl. Phys. Lett. 2003, 82 (3):328-330.
[5]Hasman E, Bomzon Z, Niv A, et al. Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures[J]. Optics Communications, 2002, 209(1-3):45-54.
[6]Zhang X H, Tang D L, Zhou L, et al. A quasi-continuous all-dielectric metasurface for broadband and high-efficiency holographic images[J]. J. Phys. D: Appl. Phys., 2020, 53: 465105.
[7]Staude I, Miroshnichenko A E, Decker M, et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks[J]. Acs Nano, 2013, 7(9):7824-7832.
[8]Liu S, Sinclair M B, Mahony T S, et al. Optical magnetic mirrors without metals[J]. Optica, 2014, 1(4): 250-256.
[9]Zhu L, Kapraun J, Ferrara J, et al. Flexible photonic metastructures for tunable coloration[J]. Optica, 2015, 2(3):255-258.
[10] Shen B, Wang P, Polson R, et al. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint [J]. Nature Photonics, 2015, 9(6):378-382.
[11] Popa B I, Cummer S A . Compact dielectric particles as a building block for low-loss magnetic metamaterials[J]. Phys. Rev. Lett., 2008, 100(20):207401.
[12] Peng L, Ran L, Chen H, et al. Experimental observation of left-handed behavior in an array of standard dielectric resonators [J]. Phys. Rev. Lett., 2007, 98(15):157403.
[13] Zhao Q, Kang L, Du B, et al. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[J]. Phys. Rev. Lett., 2008, 101(2):027402.
[14] Zhao Q, Zhou J, Zhang F, et al. Mie resonance-based dielectric metamaterials[J]. Materials Today, 2009, 12(12):60-69.
[15] Zhou J, Koschny T, Kafesaki M, et al. Saturation of the magnetic response of split-ring resonators at optical frequencies[J]. Phys. Rev. Lett., 2005, 95(22):223902.
[16] Ahmadi A, Mosallaei H. Physical configuration and performance modeling of all-dielectric metamaterials[J]. Phys. Rev. B, 2008, 77(4):5104.
[17] Ginn J C, Brener I, Peters D W, et al. Realizing optical magnetism from dielectric metamaterials[J]. Phys. Rev. Lett., 2012, 108(9):097402.
[18] Moitra P, Slovick B A, Li W, et al. Large-scale all-dielectric metamaterial perfect reflectors[J]. ACS Photonics, 2015, 2:692-698
[19] Moitra P, Slovick B A, Gang Yu Z, et al. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector[J]. Appl. Phys. Lett., 2014, 104: 171102.
[20] Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets[J]. Phys. Rev. Lett, 2013, 110:197401 .
[21] Decker M, Staude I, Falkner M, et al. High-efficiency dielectric huygens’ surfaces[J]. Adv. Opt. Mater., 2015, 3(6):813-820.
[22] Luk’yanchuk B, Zheludev N I, Meier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Mater., 2010, 9: 707-715.
[23] Yang Y, Kravchenko I, Briggs D P, et al. All-dielectric metasurface analogue of electromagnetically induced transparency[J]. Nature Commun., 2014, 5: 6753.
[24] Wu C, Arju N, Kelp G, et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances[J]. Nature Commun., 2014,5: 4892.
[25] Zhu L, Kapraun J, Ferrara J, et al. Flexible photonic metastructures for tunable coloration[J]. Optica, 2015, 2(3):255-258.
[26] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347: 1342-1345.

相似文献/References:

[1]熊韧,曹海印,王焱清,等.非牛顿润滑静压轴承的节流器流量方程修正[J].湖北工业大学学报,2019,34(5):6.
 XIONG Ren,CAO Haiyin,WANG Yanqing,et al.Modified restrictor flow equations of hydrostatic bearings ubricated by non-Newtonian fluids[J].,2019,34(2):6.
[2]王照远,曹 民,王 毅,等. 场景与数据双驱动的隧道图像拼接方法[J].湖北工业大学学报,2020,(4):11.
 WANG Zhaoyuan,CAO Min,WANG Yi,et al. Tunnel Image Stitching Method based on Scene and Data[J].,2020,(2):11.
[3]潘 健,梁佳成,陈凤娇,等. 单电流闭环多重PR控制的LCL型逆变器[J].湖北工业大学学报,2020,(4):16.
 PAN Jian,LIANG Jiacheng,CHEN Fengjiao,et al. Design of LCL Grid Connected Inverter based on Single Closed Loop Control and Multiple PR Controllers[J].,2020,(2):16.
[4]王晓光,赵 萌,文益雪,等. 定子闭口槽结构对永磁电机齿槽转矩影响分析[J].湖北工业大学学报,2020,(4):25.
 WANG Xiaoguang,ZHAO Meng,WEN Yixue,et al. Study on Cogging Torque and Vibration Noise of Permanent Magnet Motor with Segmental Stator and Closed-Slot[J].,2020,(2):25.
[5]宇 卫,凃玲英,陈 健. 风电场集中接入对集电线电流保护的影响[J].湖北工业大学学报,2020,(4):29.
 YU Wei,TU Lingying,CHEN Jian. Effect of the Collective Line Current Protection when Wind Farms are Centralized Accessed to the Power System[J].,2020,(2):29.
[6]廖政斌,王泽飞,祝 珊. 二惯量系统谐振在线抑制及相位补偿[J].湖北工业大学学报,2020,(4):34.
 LIAO Zhengbin,WANG Zefei,ZHU Shan. Online Resonance Suppression and Phase Compensation for Double Inertia System[J].,2020,(2):34.
[7]王 欣,游 颖,姜天翔,等. 面向3D打印过程的产品工艺设计和优化[J].湖北工业大学学报,2020,(4):39.
 WANG Xin,YOU Ying,JIANG Tianxiang,et al. Product Process Design and Optimization for 3D Printing Processes[J].,2020,(2):39.
[8]冉晶晶,文 红,罗雅梅,等. 全自动样品前处理平台及其控制系统[J].湖北工业大学学报,2020,(4):43.
 RAN Jingjing,WEN Hong,LUO Yamei,et al. Research on Automatic Sample Preprocessing Platform and its Control System[J].,2020,(2):43.
[9]杨 磊,马志艳,石 敏,等. 基于模糊PID的小型冷库过热度控制方法[J].湖北工业大学学报,2020,(4):43.
 YANG Lei,MA Zhiyan,SHI Min,et al. Research on Superheat Control Method of Small Cold Storage based on Fuzzy PID[J].,2020,(2):43.
[10]黄 晶,周细枝,周业望. 动态注塑成型模具的设计与实验研究[J].湖北工业大学学报,2020,(4):52.
 HUANG Jing,ZHOU Xizhi,ZHOU Yewang. Design and Experimental Study of Dynamic Injection Molding[J].,2020,(2):52.

备注/Memo

备注/Memo:
 [收稿日期] 2020-11-10
[基金项目] 安徽省优秀青年人才支持计划重点项目(gxyqZD2020041);安徽省自然科学基金重点项目(KJ2019A0684)
[第一作者] 马慧(1981-), 女,安徽颍上人,巢湖学院讲师,研究方向为新型人工电磁材料
更新日期/Last Update: 2021-04-23