[1]陈 璇,周明来,叶建军,等. 不同骨料对粗放型绿色屋顶人工基质理化性质的影响[J].湖北工业大学学报,2021,(5):73-80.
 CHEN Xuan,ZHOU Minglai,YE Jianjun,et al. Effect of Different Aggregates on Physical and Chemical Properties of Extensive Green Roof Artificial Substrate[J].,2021,(5):73-80.
点击复制

 不同骨料对粗放型绿色屋顶人工基质理化性质的影响()
分享到:

《湖北工业大学学报》[ISSN:1003-4684/CN:42-1752/Z]

卷:
期数:
2021年第5期
页码:
73-80
栏目:
湖北工业大学学报
出版日期:
2021-10-31

文章信息/Info

Title:
 Effect of Different Aggregates on Physical and Chemical Properties of Extensive Green Roof Artificial Substrate
文章编号:
1003-4684(2021)05-0073-08
作者:
 陈 璇 周明来 叶建军 刘 瑛 刘瑞芬
 湖北工业大学土木建筑与环境学院,河湖生态修复与藻类利用湖北省重点实验室, 湖北 武汉 430068
Author(s):
 CHEN Xuan ZHOU Minglai YE Jianjun LIU Ying LIU Ruifen
 School of Civil Engin.,Architecture and Environment,Hubei Univ. of Tech.,Wuhan 430068,China;[JZ]Key Laboratory of River and Lake Ecological Restoration and Algae[JZ]Utilization of Hubei Province, Wuhan 430068, China
关键词:
 粗放型绿色屋顶 人工基质 理化性质 蛭石 珍珠岩
Keywords:
 extensive green roof artificial substrate physical and chemical properties vermiculite perlite
分类号:
X5
文献标志码:
A
摘要:
 轻质骨料是粗放型绿色屋顶基质层的主要成分,为研究分析其配比、级配及类型对基质理化性质的影响,采用三种常见轻质骨料蛭石3~5 mm、珍珠岩3~6 mm、珍珠岩4~8 mm,每种骨料按照90 %、85 %、80 %的添加率分别与一种有机质鸡粪进行充分混合,共得到九组基质种类并测定各组基质的颗粒粒径分布、干密度、比重、孔隙度、最大持水量、饱和载荷、渗透率、有机质总量、碱解氮含量、速效磷含量。结果表明 :随着蛭石添加率的增加,蛭石组的有机质总量、碱解氮及速效磷含量显著减小。当蛭石添加率达到90 %时,蛭石组比重显著降低。随着珍珠岩添加率的增加,珍珠岩组的干密度、最大持水量、饱和载荷、有机质总量、碱解氮及速效磷含量减小而孔隙度、渗透率增大。当珍珠岩添加率为90 %、85 %时,骨料级配对最大持水量有显著影响,珍珠岩3~6 mm组的最大持水量高于珍珠岩4~8 mm组的,最大持水量与该组粒径为0.5~1 mm颗粒的质量分数呈正相关。在骨料添加率相同时,珍珠岩组的干密度、饱和载荷、有机质总量、碱解氮及速效磷含量低于蛭石组,但其孔隙度高于蛭石组。按照德国FLL规范,添加率为90%的蛭石3~5 mm组、添加率为90%的珍珠岩3~6 mm组和添加率为90%珍珠岩4~8 mm组具备潜在的应用价值。
Abstract:
 Lightweight aggregate is the main component of the extensive green roof substrate layer. To study and analyze the influence of its ratio, gradation and type on the physical and chemical properties of the substrate,three common lightweight aggregate vermiculite 3~5 mm, perlite 3~6 mm, perlite 4~8 mm and an organic chicken manure were used. Each aggregate was thoroughly mixed with organic chicken manure according to the addition ratio of 90%, 85%, 80%, and finally nine groups of matrix species were obtained. The particle size distribution, dry density, specific gravity, porosity, maximum water holding capacity, saturation load , permeability of the substrates,total organic matter, content of alkaline hydrolysis nitrogen and content of available phosphorus in each group were measured. The results indicate that with the increase of the addition rate of vermiculite, the total organic matter, the content of alkaline hydrolysis nitrogen and the content of available phosphorus in the vermiculite group decreased significantly. When the addition rate of vermiculite reached 90 %, the specific gravity of vermiculite group decreased obviously. As the addition rate of perlite decreases, the dry density, maximum water holding capacity, saturation load, total organic matter, content of alkaline hydrolysis nitrogen, and content of available phosphorus of the perlite group increase while the porosity and permeability decrease. When the addition rate of perlite is 85%, 90%, the maximum water holding capacity of aggregate grading has a significant effect. The maximum water holding capacity of the perlite 3~6 mm group is higher than that of the perlite 4~8 mm group. When the aggregate addition rate is the same, the perlite group has lower dry density, saturation load, total organic matter, content of alkaline hydrolysis nitrogen, and content of available phosphorus than the vermiculite group, but its porosity is higher than the vermiculite group. The perlite group has a wider adjustment range for permeability. According to the German FLL standard, the vermiculite 3~5 mm group with an aggregate addition ratio of 90%, the perlite 3~6 mm group with an aggregate addition ratio of 90% and the perlite 4~8 mm group with an aggregate addition ratio of 90% have potential application value.

参考文献/References:

[1] VIJAYARAGHAVAN K. Green roofs: A critical review on the role of components, benefits, limitations and trends[J]. Renewable and Sustainable Energy Reviews, 2016,57:740-752.
[2] HASHEMI S S G, MAHMUD H B, Ashraf M A. Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review[J]. Renewable and Sustainable Energy Reviews, 2015,52:669-679.
[3] 邓陈宁, 李家科, 李怀恩. 城市雨洪管理中绿色屋顶研究与应用进展[J]. 环境科学与技术, 2018,41(3):141-150.
[4] XIAO M, LIN Y, HAN J, et al. A review of green roof research and development in China[J]. Renewable and Sustainable Energy Reviews, 2014,40:633-648.
[5] JENNETT T S,ZHENG Y.Component characterization and predictive modeling for green roof substrates optimized to adsorb P and improve runoff quality:A review[J].Environmental Pollution,2018,237:988-999.
[6] 王啸宇, 郑思俊, 张青萍, 等. 屋顶绿化适用栽培基质材料保水特性比较研究[J]. 西北林学院学报, 2017,32(5):257-262.
[7] 潘颖, 李孝良. 几种无土栽培基质理化性质比较[J]. 安徽农学通报, 2007(5):55-56.
[8] 张华, 李茂, 曹金露, 等. 常用屋顶绿化基质材料的保水性能[J]. 土木建筑与环境工程, 2015,37(1):67-72.
[9] 中华人民共和国水利部 . 土工试验方法标准 :GB/T 50123- 2019[S]. 北京 : 中国计划出版社 ,2019.
[10] FLL. Duideline s for the Planning , Construction and Execution of green-roof sites[M]. Germany Troisdorf: Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V, 2002.
[11] 李铭怡, 邵艳艳, 彭逗逗, 等. 屋顶绿化轻型种植基质的水肥保持效应研究[J]. 三峡大学学报(自然科学版), 2019,41(4):95-101.
[12] 孙敏奥, 岩松. 几种固形物料的物理、化学性状及其栽培基质化评价[J]. 华北农学报, 2004(1):102-106.
[13] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2002.
[14] FASSMAN E A, SIMCOCK R, E. VOYDE. Extensive green roofs for stormwater mitigation,part 1: design and construction[R]. Auckland Regional Council: Auckland, 2009.
[15] LIU R, FASSMAN-BECK E. Effect of composition on basic properties of engineered media for living roofs and bioretention[J]. Journal of Hydrologic Engineering, 2016,21(6):6016002.
[16] 李耀龙, 季延海, 于平彬, 等. 基于不同基质理化特性的无土栽培混合基质筛选[J]. 北方园艺, 2016(8):36-40.
[17] 朱雄飞, 阮宏宏. 珍珠岩的显微比重测定[J]. 华东地质学院学报, 1984(1):72-79.
[18] GRACESON A, HARE M, HALL N, et al.Characterising the mineral components of green roof growing media:1st national green roof student conference[C].Sheffield,UK : Sheffield University,2011.
[19] ABAD M, FORNES F, CARRION C, et al. Physical properties of various coconut coir dusts compared to peat[J]. HortScience, 2005,40(7):2138-2144.
[20] GUBER A K, RAWLS W J, SHEIN E V, et al. Effect of soil aggregate size distribution on water retention[J]. Soil Science, 2003,168(4):223-233.
[21] GRACESON A, HARE M, MONAGHAN J, et al. The water retention capabilities of growing media for green roofs[J]. Ecological Engineering, 2013,61:328-334.
[22] NOGUERA P, ABAD M, PUCHADES R, et al. Influence of particle size on physical and chemical properties of coconut coir dust as container medium[J]. Communications in Soil Science and Plant Analysis, 2003,34(3-4):593-605.
[23] 朱崇辉, 刘俊民, 王增红. 粗粒土的颗粒级配对渗透系数的影响规律研究[J]. 人民黄河, 2005(12):79-81.
[24] PAPADOPOULOS A P, BAR-TAL A, SILBER A, et al. Inorganic and synthetic organic components of soilless culture and potting mixes[M]Soilless Culture. Amsterdam: Elsevier, 2008:505-543. 
[25] 苏小丽, 吴逍, 陈情泽, 等. 河北灵寿蛭石晶体化学特征与层间水化行为[J]. 矿物学报, 2019,39(6):673-680.
[26] 张乃于, 闫双堆, 任倩, 等. 珍珠岩粒径对土壤水分运移的影响[J]. 灌溉排水学报, 2019,38(2):22-28.
[27] GRACESON A, HARE M, HALL N, et al. Use of inorganic substrates and composted green waste in growing media for green roofs[J]. Biosystems Engineering, 2014,124:1-7.
[28] VIJAYARAGHAVAN K, RAJA F D. Design and development of green roof substrate to improve runoff water quality: Plant growth experiments and adsorption[J]. Water Research, 2014,63:94-101.
[29] Hatt B E, Fletcher T D, Deletic A. Hydraulic and pollutant removal performance of stormwater filters under variable wetting and drying regimes[J]. Water science and technology, 2007,56(12):11-19.
[30] BERNDTSSON J C, BENGTSSON L, JINNO K. Runoff water quality from intensive and extensive vegetated roofs[J]. Ecological Engineering, 2009,35(3):369-380.

相似文献/References:

[1]熊韧,曹海印,王焱清,等.非牛顿润滑静压轴承的节流器流量方程修正[J].湖北工业大学学报,2019,34(5):6.
 XIONG Ren,CAO Haiyin,WANG Yanqing,et al.Modified restrictor flow equations of hydrostatic bearings ubricated by non-Newtonian fluids[J].,2019,34(5):6.
[2]王照远,曹 民,王 毅,等. 场景与数据双驱动的隧道图像拼接方法[J].湖北工业大学学报,2020,(4):11.
 WANG Zhaoyuan,CAO Min,WANG Yi,et al. Tunnel Image Stitching Method based on Scene and Data[J].,2020,(5):11.
[3]潘 健,梁佳成,陈凤娇,等. 单电流闭环多重PR控制的LCL型逆变器[J].湖北工业大学学报,2020,(4):16.
 PAN Jian,LIANG Jiacheng,CHEN Fengjiao,et al. Design of LCL Grid Connected Inverter based on Single Closed Loop Control and Multiple PR Controllers[J].,2020,(5):16.
[4]王晓光,赵 萌,文益雪,等. 定子闭口槽结构对永磁电机齿槽转矩影响分析[J].湖北工业大学学报,2020,(4):25.
 WANG Xiaoguang,ZHAO Meng,WEN Yixue,et al. Study on Cogging Torque and Vibration Noise of Permanent Magnet Motor with Segmental Stator and Closed-Slot[J].,2020,(5):25.
[5]宇 卫,凃玲英,陈 健. 风电场集中接入对集电线电流保护的影响[J].湖北工业大学学报,2020,(4):29.
 YU Wei,TU Lingying,CHEN Jian. Effect of the Collective Line Current Protection when Wind Farms are Centralized Accessed to the Power System[J].,2020,(5):29.
[6]廖政斌,王泽飞,祝 珊. 二惯量系统谐振在线抑制及相位补偿[J].湖北工业大学学报,2020,(4):34.
 LIAO Zhengbin,WANG Zefei,ZHU Shan. Online Resonance Suppression and Phase Compensation for Double Inertia System[J].,2020,(5):34.
[7]王 欣,游 颖,姜天翔,等. 面向3D打印过程的产品工艺设计和优化[J].湖北工业大学学报,2020,(4):39.
 WANG Xin,YOU Ying,JIANG Tianxiang,et al. Product Process Design and Optimization for 3D Printing Processes[J].,2020,(5):39.
[8]冉晶晶,文 红,罗雅梅,等. 全自动样品前处理平台及其控制系统[J].湖北工业大学学报,2020,(4):43.
 RAN Jingjing,WEN Hong,LUO Yamei,et al. Research on Automatic Sample Preprocessing Platform and its Control System[J].,2020,(5):43.
[9]杨 磊,马志艳,石 敏,等. 基于模糊PID的小型冷库过热度控制方法[J].湖北工业大学学报,2020,(4):43.
 YANG Lei,MA Zhiyan,SHI Min,et al. Research on Superheat Control Method of Small Cold Storage based on Fuzzy PID[J].,2020,(5):43.
[10]黄 晶,周细枝,周业望. 动态注塑成型模具的设计与实验研究[J].湖北工业大学学报,2020,(4):52.
 HUANG Jing,ZHOU Xizhi,ZHOU Yewang. Design and Experimental Study of Dynamic Injection Molding[J].,2020,(5):52.

备注/Memo

备注/Memo:
 [收稿日期] 2020-11-13
[基金项目] 国家自然科学基金青年科学基金(51909081); 水利部珠江河口动力学及伴生过程调控重点实验室开放研究基金([2017]KJ08)
[第一作者] 陈 璇(1995-), 女,湖北武汉人,湖北工业大学硕士研究生,研究方向为低影响开发技术及水文数值模拟
[通信作者] 刘瑞芬(1986-), 女,湖北天门人,工学博士,湖北工业大学副教授,研究方向为低影响开发技术及水文数值模拟
更新日期/Last Update: 2021-11-01