[1]李明珠,杨 楠,肖 航,等. 钙基聚合硫酸铁添加对河道底泥电渗脱水的影响[J].湖北工业大学学报,2020,(4):80-84.
 LI Mingzhu,YANG Nan,XIAO Hang,et al. Effect of CaPFS Addition on Electroosmotic Dewatering for River Sediment[J].,2020,(4):80-84.
点击复制

 钙基聚合硫酸铁添加对河道底泥电渗脱水的影响()
分享到:

《湖北工业大学学报》[ISSN:1003-4684/CN:42-1752/Z]

卷:
期数:
2020年第4期
页码:
80-84
栏目:
湖北工业大学学报
出版日期:
2020-08-31

文章信息/Info

Title:
 Effect of CaPFS Addition on Electroosmotic Dewatering for River Sediment
文章编号:
1003-4684(2020)04-0080-05
作者:
 李明珠1 杨 楠1 肖 航1 张会琴12 刘德富12 皮科武12
 1 湖北工业大学土木建筑与环境学院, 湖北 武汉 430068;
 2 河湖生态修复与藻类利用湖北省重点实验室, 湖北 武汉 430068
Author(s):
 LI Mingzhu1 YANG Nan1 XIAO Hang1 ZHANG Huiqin12 LIU Defu1 2 PI Kewu12
 1 School of Civil Engin.,Architecture and Environment,Hubei Univ.of Tech.,Wuhan 430068,China;
 2 Hubei Key Laboratory of Ecological Restoration of lakes[JZ]and Utilization of Algae, Wuhan 430068,China
关键词:
 钙基聚合硫酸铁 河道底泥 电渗脱水 脱水能效
Keywords:
 calcium-based poly ferric sulfate (CaPFS) river sediment electroosmotic dewatering Energy efficiency of dewatering
分类号:
X705
文献标志码:
A
摘要:
 通过控制钙基聚合硫酸铁(CaPFS)的投加量对某河道底泥进行电渗脱水实验,探索CaPFS投加量对底泥pH、电导率、脱水能耗、脱水能效及脱水过程中底泥温度、粒径分布的影响。结果表明:在CaPFS最佳投加量为0.3~0.5 gFe/kgDS(绝干泥)、电渗脱水电压为10 V时,可将含水率为68.0%的底泥降低至58.6±0.4%,脱水能效为0.07±0.01 kWh/kg滤液,其脱出水pH为10.6±0.3,电导率为728.1±7.5 μs/cm。实验发现随CaPFS的加入,底泥电渗脱水经历三个阶段,第一阶段以电泳为主,第二阶段以电渗脱水为主,第三阶段则以离子电迁移为主,且三阶段内脱水能效和含水率整体呈“∪”形,而出水电导率呈“∩”形。
Abstract:
 Sediment, the main source of endogenous pollution, is an important part of river and lake system. After dredging, the sediment contains complex pollutants and high water content, resulting in serious secondary pollution without proper disposal. In this paper, a kind of coagulant named calcium-based poly ferric sulfate (CaPFS) was employed to dehydrate the sediment on the consideration of dosage on the pH, conductivity and dewatering energy consumption for per kg filtrate. The variation of energy efficiency, temperature of sediment and particle size distribution during dewatering were also presented. It showed that the final water content of the sediment decreased to 58.6 ± 0.4% from initial of 68.0% on the optimal dosage of 0.3~0.5 gFe/kgDS (Dry Solid) and a cell voltage of 10 V. The dewatering energy efficiency was 0.07 ± 0.01 kWh/kg filtrate, the pH of the filtrate was 10.6 ± 0.3 and the conductivity was 728.1 ± 7.5 μs/cm. It is also found the electroosmotic dewatering for the river sediment undergoes three stages as the addition of CaPFS increasing, electrophoresis, electrophoresis and ion migration orderly. The dewatering energy efficiency and final water content of mud cake are in the shape of"∪" as a whole, while conductivity of filtrate presents a shaped "∩".

参考文献/References:

[1] 李志忠, 刘培, 周路宝. 中小河道治理中的清淤及淤泥处理技术[J]. 中国水运, 2018(12): 66-67.
[2] 黄书岭, 冯夏庭, 张传庆. 岩体力学参数的敏感性综合评价分析方法研究[J]. 岩石力学与工程学报, 2008, 27(S1): 2624-2630.
[3] 郝杰, 侍克斌, 陈功民, 等. 基于围岩力学参数概率分布模型的变形敏感性灰关联分析[J]. 岩土力学, 2015, 36(3): 854-860.
[4] Sun Z, Gao M, Yu X. Vacuum preloading combined with electro-osmotic dewatering of dredger fill using electric vertical drains [J]. Drying Technology, 2014, 33(7): 847-853.
[5] Rao B, Huang G, Lu X, et al. An ultrahigh-pressure filtration and device design and optimize study on high dry dewatering of sludge [J]. Process Safety and Environmental Protection, 2017, 106:129-137.
[6] 卢宁, 文一波, 魏婧娟. 污泥的电渗透脱水技术研究进展[J]. 环境科学与管理, 2010(3): 85-87,95.
[7] 陈文文. 钙基聚合硫酸铁对河湖污泥脱水固磷研[D]. 武汉:湖北工业大学, 2017. 
[8] Mahmoud A,Olivier J, Vaxelaire J,et al. Electrical field: A historical review of its application and contributions in wastewater sludgedewatering[J]. Water Research, 2010,44(8): 2381-2407
[9] Leland J. Jackson, Jacob Kalff, Joseph B. Rasnnussen. Sediment pH and redox potential affect the bioavailability of Al, Cu, Fe, Mn, and Zn to rooted aquatic macrophytes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50(1):143-148.
[10] 卢宁, 莫文宁, 魏婧娟,等. 硝酸钠强化污泥电渗透脱水的试验研究[J]. 中国给水排水, 2012, 28(1): 68-70.
[11] Acar Y B, Alshawabkeh A N. Principles of electrokinetic remediation[J]. Environmental Science & Technology, 1993, 27(13): 2638-2647.
[12] Citeau M, Larue O. Influence of salt, pH and polyelectrolyte on the pressure electro-dewatering of sewage sludge[J]. Water Research, 2011,45(6): 2167-2180. 
[13] Chen G H, Lai Keith C K, Lo Irene M C. Behavior of electro-osmotic dewatering of biological sludge with salinity[J]. Separation Science and Technology, 2003, 38(4): 903-915. 
[14] Mahmoud A, Andrew F A. Hoadley, Citeau M, et al. A comparative study of electro-dewatering process performance for activated and digested wastewater sludge[J]. Water research, 2018, 129: 66-82.
[15] Sorensen P B, Christensen J R, Bruus J H. Effect of small scale solids migration in filter cakes during filtration of waste water solids suspensions[J]. Water Environment Research, 1995, 67(1): 25-32.

相似文献/References:

[1]熊韧,曹海印,王焱清,等.非牛顿润滑静压轴承的节流器流量方程修正[J].湖北工业大学学报,2019,34(5):6.
 XIONG Ren,CAO Haiyin,WANG Yanqing,et al.Modified restrictor flow equations of hydrostatic bearings ubricated by non-Newtonian fluids[J].,2019,34(4):6.
[2]王照远,曹 民,王 毅,等. 场景与数据双驱动的隧道图像拼接方法[J].湖北工业大学学报,2020,(4):11.
 WANG Zhaoyuan,CAO Min,WANG Yi,et al. Tunnel Image Stitching Method based on Scene and Data[J].,2020,(4):11.
[3]潘 健,梁佳成,陈凤娇,等. 单电流闭环多重PR控制的LCL型逆变器[J].湖北工业大学学报,2020,(4):16.
 PAN Jian,LIANG Jiacheng,CHEN Fengjiao,et al. Design of LCL Grid Connected Inverter based on Single Closed Loop Control and Multiple PR Controllers[J].,2020,(4):16.
[4]王晓光,赵 萌,文益雪,等. 定子闭口槽结构对永磁电机齿槽转矩影响分析[J].湖北工业大学学报,2020,(4):25.
 WANG Xiaoguang,ZHAO Meng,WEN Yixue,et al. Study on Cogging Torque and Vibration Noise of Permanent Magnet Motor with Segmental Stator and Closed-Slot[J].,2020,(4):25.
[5]宇 卫,凃玲英,陈 健. 风电场集中接入对集电线电流保护的影响[J].湖北工业大学学报,2020,(4):29.
 YU Wei,TU Lingying,CHEN Jian. Effect of the Collective Line Current Protection when Wind Farms are Centralized Accessed to the Power System[J].,2020,(4):29.
[6]廖政斌,王泽飞,祝 珊. 二惯量系统谐振在线抑制及相位补偿[J].湖北工业大学学报,2020,(4):34.
 LIAO Zhengbin,WANG Zefei,ZHU Shan. Online Resonance Suppression and Phase Compensation for Double Inertia System[J].,2020,(4):34.
[7]王 欣,游 颖,姜天翔,等. 面向3D打印过程的产品工艺设计和优化[J].湖北工业大学学报,2020,(4):39.
 WANG Xin,YOU Ying,JIANG Tianxiang,et al. Product Process Design and Optimization for 3D Printing Processes[J].,2020,(4):39.
[8]冉晶晶,文 红,罗雅梅,等. 全自动样品前处理平台及其控制系统[J].湖北工业大学学报,2020,(4):43.
 RAN Jingjing,WEN Hong,LUO Yamei,et al. Research on Automatic Sample Preprocessing Platform and its Control System[J].,2020,(4):43.
[9]杨 磊,马志艳,石 敏,等. 基于模糊PID的小型冷库过热度控制方法[J].湖北工业大学学报,2020,(4):43.
 YANG Lei,MA Zhiyan,SHI Min,et al. Research on Superheat Control Method of Small Cold Storage based on Fuzzy PID[J].,2020,(4):43.
[10]黄 晶,周细枝,周业望. 动态注塑成型模具的设计与实验研究[J].湖北工业大学学报,2020,(4):52.
 HUANG Jing,ZHOU Xizhi,ZHOU Yewang. Design and Experimental Study of Dynamic Injection Molding[J].,2020,(4):52.

备注/Memo

备注/Memo:
[收稿日期] 2019-10-22
[基金项目] 国际合作水污染防治重大科技项目(2017ZX07101003-008)
[第一作者] 李明珠(1995-), 女,湖北荆门人, 湖北工业大学硕士研究生,研究方向为河道底泥处理
[通信作者] 皮科武(1975-), 男, 湖北益阳人, 工学博士,湖北工业大学教授,研究方向为淤污泥生态处理与清洁生产
更新日期/Last Update: 2020-08-16