参考文献/References:
[1]KONG Q, WU Z, SONG Y. Online detection of external thread surface defects based on an improved template matching algorithm [J ]. Measurement, 2022, 195: 111087. [2 ]JOHN V, YONEDA K, LIU Z, et al. Saliency map generation by the convolutional neural network for real -time traffic light detection using template matching [J ]. IEEE transactions on computational imaging, 2015, 1(03): 159 -173. [3 ]YU X K,WANG Z W,WANG Y H,et al. Edge detection of agricultural products based on morphologically improved canny algorithm [J ]. Mathematical Problems in Engineering, 2021, 2021(03):1 -10. [4 ]王睿男,武穆清,陈铁英,等.基于形态学的红外图像边缘检测 [J ].北京邮电大学学报,2021,44(01):66 -71. [5 ]曹宇, 徐传鹏. 一种改进阈值分割算法在镜片缺陷检测中的应用 [J ].激光与光电子学进展,2021, 58(16):219 -224. [6 ]周晓彦,王珂,李凌燕. 基于深度学习的目标检测算法综述 [J ]. 电子测量技术,2017,40(11):89 -93. [7 ]杨传礼,张修庆.基于机器视觉和深度学习的材料缺陷检测应用综述 [J ].材料导报,2022,36(16):226 -234. [8 ]靳晶晶,王佩.基于卷积神经网络的图像识别算法研究 [J ].通信与信息技术,2022(02):76 -81. [9 ]张上,王恒涛,冉秀康. 基于YOLOv5的轻量化交通标志检测方法 [J ]. 电子测量技术,2022,45(08):129 -135. [10 ] 张立国,马子荐,金梅,等.基于YOLO的轻量红外图像行人检测方法 [J ].激光与红外,2022,52(11):1737 -1744. [11 ] XIANG Y, FEI Q. Car, Cyclist and pedestrian object detection based on YOLOv5 [J ]. International Journal of New Developments in Engineering and Society, 2022, 6(03):38 -42. [12 ] FANG C, XIANG H, LENG C, et al. Research on real -time detection of safety harness wearing of workshop personnel based on YOLOv5 and OpenPose [J ]. Sustainability, 2022, 14(10): 5872. [13 ] CAO X, ZHANG F, YI C, et al. Wafer surface defect detection based on improved YOLOv3 network [C ]. Proceedings -2020 5th International Conference on Mechanical, Control and Computer Engineering, ICMCCE 2020, 9421681 :1475 -1478. [14 ] XIE Y, HU W, XIE S, et al. Surface defect detection algorithm based on feature -enhanced YOLO [J ]. Cognitive Computation, 2022: 1 -15. [15 ] CHEN S H, TSAI C C. SMD LED chips defect detection using a YOLOv3 -dense model [J ]. Advanced engineering informatics, 2021, 47: 101255. [16 ] ZHANG D,CHEN X,REN Y,et al.SmartGYOLO: alight -weight real -time object detection network [J ].Journal of Physics: Conference Series,2021, 1757: 12096. [17 ] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real -time object detection [C ].Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779 -788. [18 ] HAN K, WANG Y, TIAN Q, et al. Ghostnet: More features from cheap operations [C ] Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2020: 1577 -1586. [19 ] HU J, SHEN L, ALBANIE S. et al. Squeeze and excitation networks [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(08):2011 -2023. [20 ] LIU J W, LIU J W, LUO X L. Research progress in attention mechanism in deep learning [J ]. Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2021, 43(11): 1499 -1511. [21 ] WANG Q, WU B, ZHU P, et al. ECA -Net: Efficient channel attention for deep convolutional neural networks [C ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2020: 11531 -11539. [22 ] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module [C ]. Proceedings of the European conference on computer vision (ECCV). 2018: 3 -19. [23 ] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation [C ]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 3146 -3154. [24 ] SHIV R D, SATISH K S, BIDYUT B C. Activation functions in deep learning: A comprehensive survey and benchmark [J ]. Neurocomputing, 2022,503(07):92 -108. [25 ] MA N, ZHANG X, SUN J. Funnel activation for visual recognition [C ]. Computer Vision -ECCV 2020: 16th European Conference, Glasgow, UK, August 23 -28, 2020, Proceedings, Part XI 16. Springer International Publishing, 2020: 351 -368.
相似文献/References:
[1]周 浩,周先军,邱书畅.下采样迭代和超分辨率重建的图像风格迁移[J].湖北工业大学学报,2020,(1):25.
ZHOU Hao,ZHOU Xianjun,QIU Shuchang.Image Style Transfer Algorithm Based on Downsampling Iterative and Super-Resolution Reconstruction[J].,2020,(4):25.
[2]张 宇,程 玉,陈建峡,等. 基于深度学习的在线推荐学习系统设计与开发[J].湖北工业大学学报,2021,(5):64.
ZHANG Yu,CHENG Yu,CHEN Jianxia,et al. Design and Development of Online Recommendation Learning System Based on Deep Learning[J].,2021,(4):64.
[3]武明虎,雷常鼎,刘 聪. 改进的轻量级YOLOv4输电线路鸟巢检测方法[J].湖北工业大学学报,2023,(2):11.
WU Minghu,LEI Changding,LIU Cong. Improved YOLOv4 Transmission Lines Bird’s Nest Detection Method[J].,2023,(4):11.
[4]董 庚1,王焱清1,2,等.基于 ResNet18网络的油茶果壳籽分选研究[J].湖北工业大学学报,2023,(5):29.
DONG Gen,WANG Yanqing,SUN Jiwei,et al.Sorting Model of Camellia Fruit Shells and TeaSeeds Based on ResNet18 Network[J].,2023,(4):29.