参考文献/References:
[1]SONG M, TAN H, CHAO D, et al. Recent advances in Zn -Ion batteries [J ].Advanced Functional Materials, 2018, 28(41): 1802564. [2 ]SELVAKUMARAN D, PAN A, LIANG S, et al. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn -ion batteries [J ].Journal of Materials Chemistry A, 2019, 7(31): 18209 -18236. [3 ]DING J, GAO H, JI D, et al. Vanadium -based cathodes for aqueous zinc -ion batteries: from crystal structures, diffusion channels to storage mechanisms [J ].Journal of Materials Chemistry A, 2021, 9(09): 5258 -5275. [4 ]JIN T, HAN Q,JIAO L. Binder -Free Electrodes for Advanced Sodium -Ion Batteries [J ].Adv Mater, 2020, 32(03): 1806304. [5 ]LUAIS E,MERY A,ABOU -RJEILY J,et al.A self -standing and binder -free electrodes fabricated from carbon nanotubes and an electrodeposited current collector applied in lithium -ion batteries [J ].Journal of Electrochemical Science and Technology,2019(04): 373 -380. [6 ]ZHANG Z, HOU Y, ZHANG S, et al. Facile synthesized Cu -SnO2 anode materials with three -dimensional metal cluster conducting architecture for high performance lithium -ion batteries [J ].Chinese Chemical Letters, 2018, 29(11): 1656 -1660. [7 ]ZOU R, ZHANG Z, YUEN M F, et al. Three -dimensional -networked NiCo2S4nanosheet array/carbon cloth anodes for high -performance lithium -ion batteries [J ].NPG Asia Materials, 2015, 7(06): e195. [8 ]CHEN C, ZHANG Y, LI Y, et al. Highly conductive, lightweight, low -tortuosity carbon frameworks as ultrathick 3D current collectors [J ].Advanced Energy Materials, 2017, 7(17): 1700595. [9 ]JIAO T, YANG Q, WU S, et al. Binder -free hierarchical VS2 electrodes for high -performance aqueous Zn ion batteries towards commercial level mass loading [J ].Journal of Materials Chemistry A, 2019, 7(27): 16330 -16338. [10 ] SHEN F, LUO W, DAI J, et al. Ultra -thick, low -tortuosity, and mesoporous wood carbon anode for high -performance sodium -ion batteries [J ].Advanced Energy Materials, 2016, 6(14): 1802564. [11 ] CHEN Y, ZHANG Z, HUANG Z, et al. Effects of oxygen -containing functional groups on the supercapacitor performance of incompletely reduced graphene oxides [J ].International Journal of Hydrogen Energy, 2017, 42(10): 7186 -7194. [12 ] GUO D, QIN J, YIN Z, et al. Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three -dimensional network between carbon fibers for ultralong cycle -life and ultrahigh rate sodium -ion batteries [J ].Nano Energy, 2018, 45: 136 -147. [13 ] CHEN L, RUAN Y, ZHANG G, et al. Ultrastable and high -performance Zn/VO2 battery based on a reversible single -phase reaction [J ].Chemistry of Materials, 2019, 31(03): 699 -706. [14 ] LI R,LIU C Y.VO2(B) nanospheres:Hydrothermal synthesis and electrochemical properties [J ].Materials Research Bulletin,2010,45(06):688 -692. [15 ] LEE S H, CHEONG H M. SEONG M J, et al. Raman spectroscopic studies of amorphous vanadium oxide thin films [J ].Solid State Ionics, 2003, 165: 111 -116. [16 ] LI S, LIU G, LIU J, et al. Carbon fiber cloth@VO2 (B): excellent binder -free flexible electrodes with ultrahigh mass -loading [J ].Journal of Materials Chemistry A, 2016, 4(17): 6426 -6432. [17 ] LV T T, LUO X, YUAN G Q, et al. Layered VO2@N -doped carbon composites for high -performance rechargeable aqueous zinc -ion batteries [J ].Chemical Engineering Journal, 2022, 428: 131211. [18 ] ZHANG J, MA Y, DU Y, et al. Carbon nanodots/WO3 nanorods Z -scheme composites: Remarkably enhanced photocatalytic performance under broad spectrum [J ].Applied Catalysis B: Environmental, 2017, 209: 253 -264. [19 ] WANG Z, LIANG P, ZHANG R, et al. Oxygen -defective V2O5nanosheets boosting 3D diffusion and reversible storage of zinc ion for aqueous zinc -ion batteries [J ].Applied Surface Science, 2021, 562: 150196. [20 ] TANG W, LAN B, TANG C, et al. Urchin -like spinel MgV2O4as a cathode material for aqueous zinc -ion batteries [J ].ACS Sustainable Chemistry & Engineering, 2020, 8(09): 3681 -3688. [21 ] TAO Y, LI Z, TANG L, et al. Nickel and cobalt Co -substituted spinel ZnMn2O4@N -rGO for increased capacity and stability as a cathode material for rechargeable aqueous zinc -ion battery [J ].Electrochimica Acta, 2020, 331: 135296. [22 ] YUE X, LIU H,IU P. Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries [J ].Chem Commun (Camb), 2019, 55(11): 1647 -1650. [23 ] WANG C, ZENG Y, XIAO X, et al. γ -MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc -ion battery [J ].Journal of Energy Chemistry, 2020, 43: 182 -187. [24 ] CHEN L, YANG Z, QIN H, et al. Graphene -wrapped hollow ZnMn2O4 microspheres for high -performance cathode materials of aqueous zinc ion batteries [J ].Electrochimica Acta, 2019, 317: 155 -163. [25 ] BI S, WU Y, CAO A, et al. Free -standing three -dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc -ion batteries with superior rate performance [J ].Materials Today Energy, 2020, 18: 100548. [26 ] ZHU C, FANG G, ZHOU J, et al. Binder -free stainless steel@Mn3O4 nanoflower composite: a high -activity aqueous zinc -ion battery cathode with high -capacity and long -cycle -life [J ].Journal of Materials Chemistry A, 2018, 6(20): 9677 -9683.