[1]顾子扬,崔艳芳,刘滨磊.溶瘤病毒联合离子液体对肿瘤的杀伤治疗研究[J].湖北工业大学学报,2024,39(1):80-85.
 LUO Jie,HUANG Wentao,HE Zhongwei.Low Carbon Economic Dispatch Considering Peak Shaving and Valley Filling Characteristics of Carbon Capture Power Plants[J].,2024,39(1):80-85.
点击复制

溶瘤病毒联合离子液体对肿瘤的杀伤治疗研究()
分享到:

《湖北工业大学学报》[ISSN:1003-4684/CN:42-1752/Z]

卷:
39
期数:
2024年第1期
页码:
80-85
栏目:
出版日期:
2024-02-20

文章信息/Info

Title:
Low Carbon Economic Dispatch Considering Peak Shaving and Valley Filling Characteristics of Carbon Capture Power Plants
文章编号:
1003-4684(2024)01-0080-06
作者:
顾子扬崔艳芳刘滨磊
(湖北工业大学生物工程与食品学院,湖北 武汉 430068)
Author(s):
LUO Jie1HUANG Wentao1HE Zhongwei2
(1 Hubei Collaborative Innovation Center for Highefficiency Utilization of Solar Energy,Hubei Univ. of Tech., Wuhan 430068, China; 2 State Grid Enshi Power Supply Company, Enshi 445000, China)
关键词:
溶瘤病毒离子液体肿瘤杀伤肿瘤治疗
Keywords:
carbon peaking thermal power carbon capture peak shaving and valley filling carbon trading
分类号:
R153
文献标志码:
A
摘要:
单纯疱疹病毒2型作为溶瘤病毒的一种,能在体外对肿瘤细胞产生杀伤效果,在体内对肿瘤组织起到抑制生长效果.香叶酸和胆碱碳酸氢盐离子液体具有促进药物吸收、在组织中滞留药物的效果.合成香叶酸-胆碱碳酸氢盐离子液体,采用盐复分解法制得,进行蒸馏、重结晶法进行提纯,与一定比例 PBS溶液混合,置换单纯疱疹病毒2型原有的溶剂,通过对肿瘤组织细胞进行体外杀伤、体内治疗等实验,证明离子液体可以使溶瘤病毒更好地渗透进入肿瘤组织中,使溶瘤病毒长期存在肿瘤组织内,从而加强溶瘤病毒对肿瘤的抑制、杀伤效果.
Abstract:
In the context of the current large scale thermal power generation, carbon capture power plants have become one of the best choices to quickly achieve the "dual carbon" goal. Due to the high energy consumption of traditional fixed type capture and the problem of wind solar antipeak shaving, the introduction of liquid storage carbon capture power plants is considered to develop a new dispatch strategy to improve the lowcarbon economic characteristics of the system. First, the operation mechanism of the fixed type and the liquid storage type are compared, and the peak shaving and valley filling characteristics of the liquid storage type are explored according to the characteristics of each dispatching resource during the load peak and valley period; then, a comprehensive system that takes into account operating costs, abandoned air volume and carbon emissions is constructed. Finally, through the simulation example comparison, the system carbon emissions of the reservoir containing carbon capture power plant are reduced by 3.8%, the comprehensive cost is reduced by 5.9%, and the curtailment cost is reduced by 65.4%, which verifies the superiority of the proposed scheduling strategy.

参考文献/References:

[1] ROMAGRODRIGUESC,MENDESR,BAPTISTAPV,etal.Targetingtumormicroenvironmentforcancertherapy[J].Internationaljournalof molecularsciGences,2019,20(04):840.[2] RUSSELLL,PENGK W.TheemergingroleofoncoGlyticvirustherapyagainstcancer[J].Chineseclinicaloncology,2018,7(02):16.[3] LUNDSTROM K.LatesttrendsincancertherapyapGplyingviralvectors[J].Future Virology,2017,12(11):667G684.[4] NORDNESSO,BRENNECKEJF.Iondissociationinionicliquidsandionicliquidsolutions[J].ChemicalReGviews,2020,120(23):12873G12902.[5] BENEDETTO A,BALLONEP.RoomGtemperatureiGonicliquidsandbiomembranes:settingthestageforapplicationsinpharmacology,biomedicine,andbioGnanotechnology[J].Langmuir,2018,34(33):9579G9597.[6] JAVEDF,ULLAHF,ZAKARIA M R,etal.AnapGproach to classification and hiGtech applications ofroomGtemperatureionicliquids(RTILs):Areview[J].JournalofMolecularLiquids,2018,271:403G420.[7]  DIAS A R,COSTA ‐ RODRIGUES J,FERGNANDES M H,etal.Theanticancerpotentialofionicliquids[J].ChemMedChem,2017,12(01):11G18.[8] DIASA R,COSTAGRODRIGUESJ,TEIXEIRA C,etal.Ionicliquidsfortopicaldeliveryincancer[J].Current medicinalchemistry,2019,26(41):7520G7532.[9] ALBADAWIH,ZHANGZ,ALTUNI,etal.PercuGtaneousliquidablationagentfortumortreatmentanddrugdelivery[J].Sciencetranslationalmedicine,2021,13(580):eabe3889.[10]ZAKREWSKY M,BANERJEE A,APTE S,etal.Cholineandgeranatedeepeutecticsolventasabroad‐spectrumantisepticagentforpreventiveandtheraGpeuticapplications[J].Advancedhealthcarematerials,2016,5(11):1282G1289.[11]CHENGYQ,WANGSB,LIUJH,etal.Modifyingthetumour microenvironmentandrevertingtumourcells:Newstrategiesfortreating malignanttumours[J].CellProliferation,2020,53(08):e12865.[12]LIUBL,ROBINSON M,HANZQ,etal.ICP34.5deletedherpessimplexviruswithenhancedoncolytic,immunestimulating,andantiGtumourproperties[J].Genetherapy,2003,10(04):292G303.[13]MAHASA KJ,ELADDADIA,DEPILLISL,etal.OncolyticpotencyandreducedvirustumorGspecificityinoncolyticvirotherapy.A mathematicalmodellingapGproach[J].Plosone,2017,12(09):e0184347.[14]V?H?GKOSKELA M,HINKKANEN A.TumorreGstrictionstooncolyticvirus[J].Biomedicines,2014,2(02):163G194.[15]BAIY,HUIP,DUX,etal.Updatestotheantitumormechanism ofoncolyticvirus[J].Thoracic Cancer,2019,10(05):1031G1035.[16]MAJ,RAMACHANDRAN M,JINC,etal.CharacGterizationofvirusGmediatedimmunogeniccancercelldeathandtheconsequencesforoncolyticvirusGbasedimmunotherapyofcancer[J].Celldeath & disease,2020,11(01):1G15.[17]TeimooriA,SoleimanjahiH,PourasgariF.CompariGsonofrotavirus RF strainand HSVG1titration byCCID50% and plaqueassays[J].Pathobiology ReGsearch,2012,15(02):35G45.[18]LIH,ZHOU L,ZHOUJ,etal.UnderlyingmechaGnismsanddruginterventionstrategiesforthetumourmicroenvironment[J].Journal of Experimental &ClinicalCancerResearch,2021,40(01):1G21.[19]?ZT?RKGATAR K,ERO^GLU H,?ALI?S.Noveladvancesintargeteddrugdelivery[J].Journalofdrugtargeting,2018,26(08):633G642.[20]ELIAI,HAIGISMC.MetabolitesandthetumourmiGcroenvironment:fromcellularmechanismstosystemicmetabolism[J].Nature Metabolism,2021,3(01):21G32.[21]AYOBAZ,RAMASAMY TS.Cancerstemcellsaskeydriversoftumourprogression[J].JournalofbioGmedicalscience,2018,25(01):1G18.[22]PEARLT M,MARKERTJM,CASSADY K A,etal.OncolyticvirusGbasedcytokineexpressiontoimGproveimmuneactivityinbrainandsolidtumors[J].MolecularTherapyGOncolytics,2019,13:14G21.

备注/Memo

备注/Memo:
[收稿日期]2022- 03 -12[第一作者]顾子扬(1997-),男,江苏无锡人,湖北工业大学硕士研究生,研究方向为生物制药.
更新日期/Last Update: 2024-03-19