[1]邓 伟,范 瑛,赵富财,等. 分期施工基坑开挖变形特征与数值模拟分析[J].湖北工业大学学报,2023,(2):66-73.
 DENG Wei,FAN Ying,ZHAO Fucai,et al. The Second Stage Excavation Deformation Characteristics in Staged Construction and Numerical Simulation Analysis[J].,2023,(2):66-73.
点击复制

 分期施工基坑开挖变形特征与数值模拟分析()
分享到:

《湖北工业大学学报》[ISSN:1003-4684/CN:42-1752/Z]

卷:
期数:
2023年第2期
页码:
66-73
栏目:
湖北工业大学学报
出版日期:
2023-04-30

文章信息/Info

Title:
 The Second Stage Excavation Deformation Characteristics in Staged Construction and Numerical Simulation Analysis
文章编号:
1003-4684(2023)02-0066-08
作者:
 邓 伟 范 瑛 赵富财 熊熙熙
 湖北工业大学土木建筑与环境学院, 湖北 武汉 430068
Author(s):
DENG Wei FAN Ying ZHAO Fucai XIONG Xixi
School of Civil Engin.,Architecture and Environment,Hubei Univ.of Tech.,Wuhan 430068,China
关键词:
 分期施工 基坑开挖 变形监测 数值模拟
Keywords:
phased construction excavation second stage excavation deformation monitoring numerical simulation
分类号:
TU74
文献标志码:
A
摘要:
 为研究分期施工过程中二期基坑开挖变形的特性及规律,以武汉市轨道交通11号线东段工程光谷线网控制中心工程为例,通过现场监测和使用Plaxis3D数值模拟相结合的方法,分别对地表沉降、桩顶沉降、桩顶水平位移、桩体水平位移和建筑物沉降进行了数据监测和模拟最后将监测结果和模拟结果对比分析,来研究二期基坑施工过程中基坑变形特性。结果表明:基坑周围围护结构变形随着基坑开挖深度的增大呈现出隆起和沉降两种不同的变化趋势,基坑开挖到达最深处时地表沉降和围护结构的位移达到最大,最后随着基坑主体结构的完善而趋于稳定;二期基坑施工过程中基坑开挖变形最大处位于一期和二期支护结构公共处,在水平方向由支护结构公共处中心位置向两端减少,垂直方向由支护结构公共处中心位置到基坑底部变形量从大到小变化,呈现出中间大两头小的变化特征。计算分析表明数值模拟结果与现场监测结果变化趋势一致,计算数据与监测数据差距较小,为基坑工程的合理设计与安全施工提供了科学依据。
Abstract:
In order to study the deformation characteristics of the second stage foundation pit excavation during the staged construction process, this paper took the Optical Valley line network control center project of the east section of Wuhan rail transit line 11 as an example. Through the method of combining on site monitoring and the use of Plaxis3D numerical simulation, the ground settlement, pile top settlement, pile top horizontal displacement, pile horizontal displacement and building settlement were monitored and simulated. Finally, the monitoring results were compared with the simulation results. Analysis of the results is aimed to study the deformation characteristics of the foundation pit during the construction of the second stage foundation pit. With the increase of the excavation depth of the foundation pit, the deformation of the maintenance structure shows two different trends of uplift and settlement. When the excavation of the foundation pit reaches the deepest depth, the surface settlement and the displacement of the retaining structure reach the maximum, and finally stabilize with the improvement of the main structure of the foundation pit. During the construction of the second phase of the foundation pit, the largest deformation of the foundation pit is located at the common part of the first and second phases of the supporting structure. In the horizontal direction, it decreases from the central position of the common part of the supporting structure to both ends, and the vertical direction of the deformation from the center of the supporting structure to the bottom of the foundation pit decreases gradually, indicating that the characteristics of small changes in the middle and two ends. The numerical simulation results are consistent with the changes in the field monitoring results. The gap between the calculated data and the monitoring data is small, which provides a scientific basis for the rational design and safe construction of foundation pit projects.

参考文献/References:

[1] SUN H, CHEN Y, ZHANG J, et al. Analytical investigation of tunnel deformation caused by circular foundation pit excavation[J]. Computers and Geotechnics, 2019, 106: 193-198.
[2] SONG D, CHEN Z, DONG L, et al. Monitoring analysis of influence of extra-large complex deep foundation pit on adjacent environment: a case study of Zhengzhou City, China[J]. Geomatics, Natural Hazards and Risk, 2020, 11(01): 2036-2057.
[3] DING Z, JIN J, HAN T C. Analysis of the zoning excavation monitoring data of a narrow and deep foundation pit in a soft soil area[J]. Journal of Geophysics and Engineering, 2018, 15(04): 1231-1241.
[4] TAN Y, ZHU H, PENG F, et al. Characterization of semi-top-down excavation for subway station in Shanghai soft ground[J]. Tunnelling and Underground Space Technology, 2017, 68: 244-261.
[5] TAN Y, WANG D. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. I: Bottom-up construction of the central cylindrical shaft[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875-1893.
[6] 刘畅,郭悦,郑刚,等.深基坑开挖对坑底桩受力变形特性的影响研究[J].建筑结构学报,2021,42(05):177-186.
[7] 李镜培,陈浩华,李林,等.软土基坑开挖深度与空间效应实测研究[J].中国公路学报,2018,31(02):208-217.
[8] 李涛,朱连华,李彬如,等.深基坑开挖土拱效应影响因素研究[J].中国矿业大学学报,2017,46(01):58-65.
[9] 刘念武,陈奕天,龚晓南,等.软土深开挖致地铁车站基坑及邻近建筑变形特性研究[J].岩土力学,2019,40(04):1515-1525.
[10] 楼春晖,夏唐代,刘念武.软土地区基坑对周边环境影响空间效应分析[J].岩土工程学报,2019,41(S1):249-252.
[11] 程康,徐日庆,应宏伟,等.杭州软黏土地区某30.2m深大基坑开挖性状实测分析[J].岩石力学与工程学报,2021,40(04):851-863.
[12] 叶帅华,李德鹏.复杂环境下深大基坑开挖监测与数值模拟分析[J].土木工程学报,2019,52(S2):117-126.
[13] 叶帅华,丁盛环,龚晓南,等.兰州某地铁车站深基坑监测与数值模拟分析[J].岩土工程学报,2018,40(S1):177-182.
[14] 尹利洁,李宇杰,朱彦鹏,等.兰州地铁雁园路站基坑支护监测与数值模拟分析[J].岩土工程学报,2021,43(S1):111-116.
[15] 李四维,高华东,杨铁灯.深基坑开挖现场监测与数值模拟分析[J].岩土工程学报,2011,33(S1):291-298.
[16] 冯晓腊,熊宗海,莫云,等.复杂条件下基坑开挖对周边环境变形影响的数值模拟分析[J].岩土工程学报,2014,36(S2):330-336.
[17] 刘杰,姚海林,任建喜.地铁车站基坑围护结构变形监测与数值模拟[J].岩土力学,2010,31(S2):456-461.
[18] 吴意谦,朱彦鹏.兰州市湿陷性黄土地区地铁车站深基坑变形规律监测与数值模拟研究[J].岩土工程学报,2014,36(S2):404-411.
[19] 韩健勇,赵文,李天亮,等.深基坑与邻近建筑物相互影响的实测及数值分析[J].工程科学与技术,2020,52(04):149-156.

相似文献/References:

[1]熊韧,曹海印,王焱清,等.非牛顿润滑静压轴承的节流器流量方程修正[J].湖北工业大学学报,2019,34(5):6.
 XIONG Ren,CAO Haiyin,WANG Yanqing,et al.Modified restrictor flow equations of hydrostatic bearings ubricated by non-Newtonian fluids[J].,2019,34(2):6.
[2]王照远,曹 民,王 毅,等. 场景与数据双驱动的隧道图像拼接方法[J].湖北工业大学学报,2020,(4):11.
 WANG Zhaoyuan,CAO Min,WANG Yi,et al. Tunnel Image Stitching Method based on Scene and Data[J].,2020,(2):11.
[3]潘 健,梁佳成,陈凤娇,等. 单电流闭环多重PR控制的LCL型逆变器[J].湖北工业大学学报,2020,(4):16.
 PAN Jian,LIANG Jiacheng,CHEN Fengjiao,et al. Design of LCL Grid Connected Inverter based on Single Closed Loop Control and Multiple PR Controllers[J].,2020,(2):16.
[4]王晓光,赵 萌,文益雪,等. 定子闭口槽结构对永磁电机齿槽转矩影响分析[J].湖北工业大学学报,2020,(4):25.
 WANG Xiaoguang,ZHAO Meng,WEN Yixue,et al. Study on Cogging Torque and Vibration Noise of Permanent Magnet Motor with Segmental Stator and Closed-Slot[J].,2020,(2):25.
[5]宇 卫,凃玲英,陈 健. 风电场集中接入对集电线电流保护的影响[J].湖北工业大学学报,2020,(4):29.
 YU Wei,TU Lingying,CHEN Jian. Effect of the Collective Line Current Protection when Wind Farms are Centralized Accessed to the Power System[J].,2020,(2):29.
[6]廖政斌,王泽飞,祝 珊. 二惯量系统谐振在线抑制及相位补偿[J].湖北工业大学学报,2020,(4):34.
 LIAO Zhengbin,WANG Zefei,ZHU Shan. Online Resonance Suppression and Phase Compensation for Double Inertia System[J].,2020,(2):34.
[7]王 欣,游 颖,姜天翔,等. 面向3D打印过程的产品工艺设计和优化[J].湖北工业大学学报,2020,(4):39.
 WANG Xin,YOU Ying,JIANG Tianxiang,et al. Product Process Design and Optimization for 3D Printing Processes[J].,2020,(2):39.
[8]冉晶晶,文 红,罗雅梅,等. 全自动样品前处理平台及其控制系统[J].湖北工业大学学报,2020,(4):43.
 RAN Jingjing,WEN Hong,LUO Yamei,et al. Research on Automatic Sample Preprocessing Platform and its Control System[J].,2020,(2):43.
[9]杨 磊,马志艳,石 敏,等. 基于模糊PID的小型冷库过热度控制方法[J].湖北工业大学学报,2020,(4):43.
 YANG Lei,MA Zhiyan,SHI Min,et al. Research on Superheat Control Method of Small Cold Storage based on Fuzzy PID[J].,2020,(2):43.
[10]黄 晶,周细枝,周业望. 动态注塑成型模具的设计与实验研究[J].湖北工业大学学报,2020,(4):52.
 HUANG Jing,ZHOU Xizhi,ZHOU Yewang. Design and Experimental Study of Dynamic Injection Molding[J].,2020,(2):52.

备注/Memo

备注/Memo:
[收稿日期] 2021-11-15
[基金项目] 国家自然科学基金(51974289)
[第一作者] 邓 伟(1997-),男,湖北恩施人,湖北工业大学硕士研究生,研究方向为道路与桥梁工程
[通信作者] 范 瑛(1969-),女,湖北黄冈人,湖北工业大学教授,研究方向为道路与桥梁工程
更新日期/Last Update: 2023-04-26