[1]沈 磊,徐岸非,黄晴宇,等. 基于GWO-P&O算法的局部阴影光伏MPPT研究[J].湖北工业大学学报,2022,(2):25-29+43.
 SHEN Lei,XU Anfei,HUANG Qingyu,et al. Research on MPPT of Photovoltaic Under Partial Shading Condition Based on GWO-P&O Algorithm[J].,2022,(2):25-29+43.
点击复制

 基于GWO-P&O算法的局部阴影光伏MPPT研究()
分享到:

《湖北工业大学学报》[ISSN:1003-4684/CN:42-1752/Z]

卷:
期数:
2022年第2期
页码:
25-29+43
栏目:
湖北工业大学学报
出版日期:
2022-04-29

文章信息/Info

Title:
 Research on MPPT of Photovoltaic Under Partial Shading Condition Based on GWO-P&O Algorithm
文章编号:
1003-4684(2022)02-0025-05
作者:
 沈 磊 徐岸非 黄晴宇 余嘉川
 湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室,湖北 武汉 430068
Author(s):
 SHEN LeiXU AnfeiHUANG QingyuYU Jiachuan
 Hubei Key Laboratory for High Efficiency Utilization of Solar Energy and OperationControl of Energy Storage System, Hubei Univ. of Tech., Wuhan, 430068, China
关键词:
 最大功率点跟踪 局部阴影 灰狼算法 扰动观察法
Keywords:
 maximum power point tracking partial shading condition grey wolf optimization perturbation & observe
分类号:
TM914
文献标志码:
A
摘要:
 针对局部阴影条件下光伏阵列最大功率点跟踪,提出了一种灰狼算法与扰动观察法相结合的复合控制算法—GWO-P&O算法。首先利用灰狼算法的全局搜索能力定位最大功率点的范围,然后采用小步长的扰动观察法进行局部搜索,找到精确的最大功率点。采用MATLAB/Simulink构建了完整的系统仿真模型,仿真结果表明,扰动观察法在局部阴影条件下陷入了局部最优解,没有追踪到最大功率点。与灰狼算法相比,该复合算法在局部阴影条件下,追踪效率达100%,提高了1.11%,其收敛时间由0.8 s缩短至0.52 s, 收敛时间提高了35%,因此,该算法兼顾了最大功率点追踪的速度和精度。系统仿真验证了该算法的正确性和有效性。
Abstract:
 In practical photovoltaic system engineering, due to the influence of changes in light intensity, the output power voltage curve of photovoltaic array often presents multi-peak phenomenon. The traditional maximum power point tracking (MPPT) algorithm is easy to be trapped in the local optimal solution and cannot accurately track the maximum value. Aiming at the maximum power point tracking of photovoltaic array under partial shading condition (PSC), a composite control algorithm GWO P&O algorithm combining grey wolf optimization (GWO) and perturbation & observe (P & O) is proposed. Firstly, the global search ability of Gray Wolf algorithm is used to locate the range of maximum power point, and then the small step disturbance observation method is used to find the accurate maximum power point. A complete system simulation model is constructed by Matlab / Simulink. The simulation results show that the disturbance observation method falls into the local optimal solution under partial shading conditions and does not track the maximum power point. Compared with the grey wolf algorithm, the tracking efficiency of the composite algorithm reaches 100 % under local shadow conditions, which increases by 1.11%. The convergence time is shortened from 0.8s to 0.5s, and the convergence time is increased by 35 %. Therefore, the algorithm takes into account the speed and accuracy of the maximum power point tracking. System simulation verifies the correctness and effectiveness of the algorithm.

参考文献/References:

[1] 向马. 局部阴影下光伏发电最大功率点跟踪及多逆变器群控的研究[D].西安:西安理工大学,2019.
[2] 李正明.局部阴影下光伏阵列最大功率点跟踪算法的研究[J].电子器件,2015(6):1440-1444.
[3] 杨海柱.阴影条件下光伏阵列的最大功率追踪算法研究[J].计算机仿真,2015(7):102-105,110.
[4] 王红艳,万盟.基于粒子群算法的MPPT控制策略研究[J].南京工程学院学报(自然科学版),2014,12(2):24-27.
[5] 李宜伦,王胜辉,郑洪.基于改进粒子群算法的光伏MPPT控制研究[J].沈阳工程学院学报(自然科学版),2019,15(01):14-19.
[6] 雷茂杰,许坦奇,孟凡英.基于自适应粒子群算法MPPT控制策略[J].电源技术,2021,45(8):1036-1039.
[7] 于新.局部阴影下变步长萤火虫算法的 光伏MPPT控制策略[J].东北电力大学学报,2019(5):53-58.
[8] 张欢韵. 多阵列光伏系统的最大功率点跟踪算法研究[D].重庆:重庆交通大学,2016.
[9] MOHANTY S, SUBUDHI B, RAY P K. A New MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions[J]. IEEE Trans. on Sustainable Energy, 2016, 7(1): 181-188.
[10] 张巧杰,王凯丽,房雪晴.基于GWO算法光伏阵列多峰值的MPPT[J].吉林大学学报(理学版),2018,56(6):1526-1532.
[11] 杨丽丽. 基于改进灰狼算法的光伏阵列最大功率点跟踪研究[D]. 保定:河北大学,2019.
[12] SEYEDALI MIRJALILI, SEYED MOHAMMAD MIRJALILI, ANDREW LEWIS. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3):46-61.
[13] 李君妍.基于改进型变步长扰动观察法的光伏发电最大功率点研究[J].电力设备管理,2021(6):108-109.

相似文献/References:

[1]熊韧,曹海印,王焱清,等.非牛顿润滑静压轴承的节流器流量方程修正[J].湖北工业大学学报,2019,34(5):6.
 XIONG Ren,CAO Haiyin,WANG Yanqing,et al.Modified restrictor flow equations of hydrostatic bearings ubricated by non-Newtonian fluids[J].,2019,34(2):6.
[2]王照远,曹 民,王 毅,等. 场景与数据双驱动的隧道图像拼接方法[J].湖北工业大学学报,2020,(4):11.
 WANG Zhaoyuan,CAO Min,WANG Yi,et al. Tunnel Image Stitching Method based on Scene and Data[J].,2020,(2):11.
[3]潘 健,梁佳成,陈凤娇,等. 单电流闭环多重PR控制的LCL型逆变器[J].湖北工业大学学报,2020,(4):16.
 PAN Jian,LIANG Jiacheng,CHEN Fengjiao,et al. Design of LCL Grid Connected Inverter based on Single Closed Loop Control and Multiple PR Controllers[J].,2020,(2):16.
[4]王晓光,赵 萌,文益雪,等. 定子闭口槽结构对永磁电机齿槽转矩影响分析[J].湖北工业大学学报,2020,(4):25.
 WANG Xiaoguang,ZHAO Meng,WEN Yixue,et al. Study on Cogging Torque and Vibration Noise of Permanent Magnet Motor with Segmental Stator and Closed-Slot[J].,2020,(2):25.
[5]宇 卫,凃玲英,陈 健. 风电场集中接入对集电线电流保护的影响[J].湖北工业大学学报,2020,(4):29.
 YU Wei,TU Lingying,CHEN Jian. Effect of the Collective Line Current Protection when Wind Farms are Centralized Accessed to the Power System[J].,2020,(2):29.
[6]廖政斌,王泽飞,祝 珊. 二惯量系统谐振在线抑制及相位补偿[J].湖北工业大学学报,2020,(4):34.
 LIAO Zhengbin,WANG Zefei,ZHU Shan. Online Resonance Suppression and Phase Compensation for Double Inertia System[J].,2020,(2):34.
[7]王 欣,游 颖,姜天翔,等. 面向3D打印过程的产品工艺设计和优化[J].湖北工业大学学报,2020,(4):39.
 WANG Xin,YOU Ying,JIANG Tianxiang,et al. Product Process Design and Optimization for 3D Printing Processes[J].,2020,(2):39.
[8]冉晶晶,文 红,罗雅梅,等. 全自动样品前处理平台及其控制系统[J].湖北工业大学学报,2020,(4):43.
 RAN Jingjing,WEN Hong,LUO Yamei,et al. Research on Automatic Sample Preprocessing Platform and its Control System[J].,2020,(2):43.
[9]杨 磊,马志艳,石 敏,等. 基于模糊PID的小型冷库过热度控制方法[J].湖北工业大学学报,2020,(4):43.
 YANG Lei,MA Zhiyan,SHI Min,et al. Research on Superheat Control Method of Small Cold Storage based on Fuzzy PID[J].,2020,(2):43.
[10]黄 晶,周细枝,周业望. 动态注塑成型模具的设计与实验研究[J].湖北工业大学学报,2020,(4):52.
 HUANG Jing,ZHOU Xizhi,ZHOU Yewang. Design and Experimental Study of Dynamic Injection Molding[J].,2020,(2):52.

备注/Memo

备注/Memo:
[收稿日期] 2021-09-23
[基金项目] 湖北省技术创新专项重大项目(2019AAA018)
[第一作者] 沈 磊(1996-),男,河南漯河人,湖北工业大学硕士研究生,研究方向为电力电子装置及电能质量优化
[通信作者] 徐岸非(1981-),男,湖北崇阳人,湖北工业大学副教授,研究方向为电力电子装置及电能质量优化
更新日期/Last Update: 2022-04-28