[1]王豪杰,周远明. 基于TADF共掺杂的蓝光OLED器件性能研究[J].湖北工业大学学报,2021,(2):19-23.
 WANG Haojie,ZHOU Yuanming. Study on the Luminescence of Blue OLED Devices Based on Thermally Activated Delayed Fluorescence Material (TADF)[J].,2021,(2):19-23.
点击复制

 基于TADF共掺杂的蓝光OLED器件性能研究()
分享到:

《湖北工业大学学报》[ISSN:1003-4684/CN:42-1752/Z]

卷:
期数:
2021年第2期
页码:
19-23
栏目:
湖北工业大学学报
出版日期:
2021-04-22

文章信息/Info

Title:
 Study on the Luminescence of Blue OLED Devices Based on Thermally Activated Delayed Fluorescence Material (TADF)
文章编号:
1003-4684(2021)02-0019-05
作者:
 王豪杰1 周远明2
1 湖北工业大学电气与电子工程学院, 湖北 武汉 430068;
2 湖北工业大学理学院, 湖北 武汉 430068
Author(s):
 WANG Haojie1 ZHOU Yuanming2
1 School of Electrical and Electronic Engineering, Hubei Univ. of Tech., Wuhan 430068,China;
2 School of Sciences, Hubei Univ. of Tech., Wuhan 430068,China
关键词:
 热活化延迟荧光材料(TADF) 蓝光OLED器件 发光
Keywords:
 thermally activated delayed fluorescence blue OLED luminescence
分类号:
TN383
文献标志码:
A
摘要:
 为提升蓝光OLED的发光性能,采用DPEPO和DMAC-DPS两种热活化延迟荧光(TADF)材料构成的主客体掺杂结构作为蓝光OLED器件的发光层,研究器件结构、客体掺杂浓度等因素对器件性能的影响。实验结果表明:采用MoO3薄膜作为空穴注入层有助于增强空穴注入和传输能力,进而提升器件性能。当DMAC-DPS掺杂浓度为30%时,器件性能是最优的,最大亮度为5650 cd/m2,最大外量子效率(EQE)为8.63%。掺杂浓度进一步增大会导致器件性能的衰退,可能是因为高浓度导致的激子淬灭导致的。TADF有助于提升蓝光OLED器件的性能并有望应用于商业化的蓝光OLED器件中。
Abstract:
 Organic light emitting diodes (OLED) are widely used in display and lighting fields because of their spontaneous radiation, high color purity, and low energy consumption. Compared with red and green OLEDs, blue OLEDs have lower performance. In this paper, a host guest doped structure was employed as the emission layer by using two thermally active delayed fluorescence (TADF) materials including DPEPO and DMAC DPS. Blue OLED devices were prepared, and the influence of the device structure, the DMAC DPS doping concentration and other factors on the device performance was studied. The use of MoO 3 film as the hole injection layer helps to enhance the hole injection and transport ability, thereby improving the device performance. When the DMAC DPS doping concentration is 30%, the optimal device performance was obtained, in which the maximum brightness is 5650 cd/m2 and the maximum quantum efficiency is 8.63%. Further increase of the doping concentration will lead to the degradation of the device performance, which may be caused by the high doping concentration induced quenching of excitons. These experimental results show that TADF can enhance the performance of blue OLEDs and has the potential to be used in commercial blue OLED devices.

参考文献/References:

[1] Zhang Q, Li B, Huang S, et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence [J]. Nature Photonics, 2014, 8(4):326-332.
[2] Song W, Lee I H, Hwang S H, et al. High efficiency fluorescent white organic light-emitting diodes having a yellow fluorescent emitter sensitized by a blue thermally activated delayed fluorescent emitter [J]. Organic Electronics, 2015, 23:138-143.
[3] Zhang Q, Tsang D, Kuwabara H, et al. Nearly 100% Internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters [J]. Advanced Materials, 2015, 27(12):2096-2100.
[4] Baumann T, Volz D. Summary for: recent progress in highly efficient blue TADF emitter materials for OLEDs [J]. SID 2017 DIGEST, 2017, 48(1):661-663.
[5] Rajamalli P, Senthilkumar N, Gandeepan P, et al. A method for reducing the singlet-triplet energy gaps of TADF materials for improving the blue OLED efficiency [J]. ACS Applied Materials & Interfaces, 2016, 8(40):27026-27034. 
[6] Zhang D, Song X, Cai M, et al. Blocking energy-loss pathways for ideal fluorescent organic light-emitting diodes with thermally activated delayed fluorescent sensitizers [J]. Advanced Materials, 2017, 30(6):1705250.
[7] Jakoby M, Richards B S, Lemmer U, et al. Investigations of singlet and triplet diffusion in thermally activated delayed-fluorescence emitters: Implications for hyperfluorescence [J]. Physical Review, 2019, 100(4):045303.
[8] Jang J S, Han S H, Choi H W, et al. Molecular design of sensitizer to suppress efficiency loss mechanism in hyper-fluorescent organic light-emitting diodes [J]. Organic Electronics, 2018, 59:236-242.
[9] Endo A, Sato K, Yoshimura K, et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes [J]. Applied Physics Letters, 2011, 98(8):42.
[10] Gaj M P, Fuentes-Hernandez C, Zhang Y, et al. Highly efficient Organic Light-Emitting Diodes from thermally activated delayed fluorescence using a sulfone–carbazole host material [J]. Organic Electronics, 2015, 16:109-112.
[11] Liu N, Shi W X, Zhou Y M, et al. Impact of dopant aggregation on the EL of blue fluorescent host-dopant emitters [J]. IEEE Electron Device Letters, 2019, 40(5):750-753.
[12] Hui X U, Zhang J, Ding D, et al. Extremely condensing triplet states of DPEPO-type hosts through constitutional isomerization for high-efficiency deep-blue thermally activated delayed fluorescence diodes [J]. Chemical Science, 2016, 7(4):2870-2882.
[13] dos Santos P L, Ward J S, Bryce M R, et al. Using guest-host interactions to optimize the efficiency of TADF OLEDs [J]. Journal of Physical Chemistry Letters, 2016, 7(17):3341-3346.
[14] Liu N, Mei S, Sun D, et al. Effects of charge transport materials on blue fluorescent organic light-emitting diodes with a host-dopant system [J]. Micromachines, 2019, 10(5):344.
[15] Baumann T, Budzynski M, Kasparek C. TADF emitter selection for deep-blue hyper-fluorescent OLEDs [J]. SID 2019 DIGEST, 2019, 50(1):466-469.

相似文献/References:

[1]熊韧,曹海印,王焱清,等.非牛顿润滑静压轴承的节流器流量方程修正[J].湖北工业大学学报,2019,34(5):6.
 XIONG Ren,CAO Haiyin,WANG Yanqing,et al.Modified restrictor flow equations of hydrostatic bearings ubricated by non-Newtonian fluids[J].,2019,34(2):6.
[2]王照远,曹 民,王 毅,等. 场景与数据双驱动的隧道图像拼接方法[J].湖北工业大学学报,2020,(4):11.
 WANG Zhaoyuan,CAO Min,WANG Yi,et al. Tunnel Image Stitching Method based on Scene and Data[J].,2020,(2):11.
[3]潘 健,梁佳成,陈凤娇,等. 单电流闭环多重PR控制的LCL型逆变器[J].湖北工业大学学报,2020,(4):16.
 PAN Jian,LIANG Jiacheng,CHEN Fengjiao,et al. Design of LCL Grid Connected Inverter based on Single Closed Loop Control and Multiple PR Controllers[J].,2020,(2):16.
[4]王晓光,赵 萌,文益雪,等. 定子闭口槽结构对永磁电机齿槽转矩影响分析[J].湖北工业大学学报,2020,(4):25.
 WANG Xiaoguang,ZHAO Meng,WEN Yixue,et al. Study on Cogging Torque and Vibration Noise of Permanent Magnet Motor with Segmental Stator and Closed-Slot[J].,2020,(2):25.
[5]宇 卫,凃玲英,陈 健. 风电场集中接入对集电线电流保护的影响[J].湖北工业大学学报,2020,(4):29.
 YU Wei,TU Lingying,CHEN Jian. Effect of the Collective Line Current Protection when Wind Farms are Centralized Accessed to the Power System[J].,2020,(2):29.
[6]廖政斌,王泽飞,祝 珊. 二惯量系统谐振在线抑制及相位补偿[J].湖北工业大学学报,2020,(4):34.
 LIAO Zhengbin,WANG Zefei,ZHU Shan. Online Resonance Suppression and Phase Compensation for Double Inertia System[J].,2020,(2):34.
[7]王 欣,游 颖,姜天翔,等. 面向3D打印过程的产品工艺设计和优化[J].湖北工业大学学报,2020,(4):39.
 WANG Xin,YOU Ying,JIANG Tianxiang,et al. Product Process Design and Optimization for 3D Printing Processes[J].,2020,(2):39.
[8]冉晶晶,文 红,罗雅梅,等. 全自动样品前处理平台及其控制系统[J].湖北工业大学学报,2020,(4):43.
 RAN Jingjing,WEN Hong,LUO Yamei,et al. Research on Automatic Sample Preprocessing Platform and its Control System[J].,2020,(2):43.
[9]杨 磊,马志艳,石 敏,等. 基于模糊PID的小型冷库过热度控制方法[J].湖北工业大学学报,2020,(4):43.
 YANG Lei,MA Zhiyan,SHI Min,et al. Research on Superheat Control Method of Small Cold Storage based on Fuzzy PID[J].,2020,(2):43.
[10]黄 晶,周细枝,周业望. 动态注塑成型模具的设计与实验研究[J].湖北工业大学学报,2020,(4):52.
 HUANG Jing,ZHOU Xizhi,ZHOU Yewang. Design and Experimental Study of Dynamic Injection Molding[J].,2020,(2):52.

备注/Memo

备注/Memo:
 [收稿日期] 2020-12-08
[基金项目] 湖北省科技厅项目(2016BKJ005);太阳能高效利用及储能运行控制湖北省重点实验室开放研究基金(HBSEES201801, HBSEES201705)
[第一作者] 王豪杰(1995-), 男, 江苏南通人,湖北工业大学硕士研究生,研究方向为半导体材料与器件
[通信作者] 周远明(1984-), 男, 湖北武汉人,湖北工业大学副教授,研究方向为半导体材料与器件,新能源技术
更新日期/Last Update: 2021-04-23