[1]刘 威,李 扬. 超低温下RC短柱轴心受压承载力可靠度研究[J].湖北工业大学学报,2022,(4):92-96.
 LIU Wei,LI Yang. Reliability Research on Axial Compressive Bearing Capacity of RC Short Columns at Ultra-low Temperature[J].,2022,(4):92-96.
点击复制

 超低温下RC短柱轴心受压承载力可靠度研究()
分享到:

《湖北工业大学学报》[ISSN:1003-4684/CN:42-1752/Z]

卷:
期数:
2022年第4期
页码:
92-96
栏目:
湖北工业大学学报
出版日期:
2022-08-28

文章信息/Info

Title:
 Reliability Research on Axial Compressive Bearing Capacity of RC Short Columns at Ultra-low Temperature
文章编号:
1003-4684(2022)04-0092-05
作者:
 刘 威 李 扬
 湖北工业大学土木建筑与环境学院, 湖北 武汉 430068
Author(s):
 LIU Wei LI Yang
 School of Civil Engineering and Environmental, Hubei Univ. of Tech., Wuhan 430068,China
关键词:
 超低温 RC短柱 受压承载力 JC法 可靠指标 荷载效应比
Keywords:
 ultra-low temperature RC short column compressive carrying strength JC method reliability index load action ratio
分类号:
TU375.3
文献标志码:
A
摘要:
 为研究钢筋混凝土(RC)短柱在超低温条件下轴心受压承载力可靠度,运用JC法,对超低温环境下我国现行混凝土结构设计标准中的短柱设计可靠指标β进行计算分析,重点研究荷载效应比值、混凝土强度等级、钢筋强度等级以及钢筋直径等因素对超低温短柱承载力可靠指标的敏感性影响。研究结果表明:荷载效应比值对可靠指标β影响较大,最不利情况取值为0.1,较于取0.5、1.0、2.0时可靠指标β降低25.8%、33.4%、34.1%;随温度降低各试验组承载力可靠指标β均先稍微降低,-20℃时降至极小值,-20℃~-100℃间可靠指标曲线陡然上升且增幅稳定;当混凝土等级从C30提高至C50可靠指标β增幅达76%以上,钢筋等级的提高和直径的增大引起可靠指标增幅为2.9%~6.6%。
Abstract:
 By using the basic principles of the JC method to compute and analyze the reliability index βof the concrete short column design in the current concrete specifications of concrete structural design in my country, it is possible to research the reliable carrying strength of the reinforced concrete short column in the ultra-low temperature environment under centric axial compression degree. In particular, it focuses on the sensitivity of the load action ratio, strength levels of concrete, intensity level of reinforcing steel bar and diameter of rebar in the ultra-low temperature environment on the reliability of the short column carrying strength. The research results show that the reliability index β will be extraordinarily impacted by the load action ratio. The worst case value is 0.1, which reduces the reliability index β by 25.8%, 33.4%, and 34.1% compared with 0.5, 1.0, and 2.0.; each test decreases with the temperature, The reliability index β of the group carrying strength first decreases slightly, and drops to a minimum value at -20℃. The reliability index curve between -20℃ and -100℃ rises abruptly and the increase is stable; when the level of concrete is increased from C30 to C50, the increase of the reliability index β reaches Above 76%, the increase in the grade and diameter of rebar increases the reliability index by 2.9% to 6.6%.

参考文献/References:

[1] 方昊天,李扬.超低温下轴拉钢混构件裂缝控制可靠度分析[J].湖北工业大学学报,2021,36(1):74-78.
[2] 王宏伟,陈少杰,周云.圆空心钢管混凝土短柱在轴向压力作用下的可靠性分析[J].土木建筑与环境工程,2018,40(6):98-107.
[3] 马辉,邹昌明,王德法,等.型钢再生混凝土柱抗剪承载力可靠度分析[J].建筑结构,2019,49(4):118-122+133.
[4] 时旭东,李俊林,郑建华,等.常温及-30℃至-120℃间冻融循环作用混凝土受压强度试验研究[J].低温工程,2015(3):13-17+23.
[5] 时旭东,居易,郑建华,等.混凝土低温受压强度试验研究[J].建筑结构,2014,44(5):29-33.
[6] 时旭东, 马驰, 郑建华, 等. 不同强度等级混凝土经历-190℃再回至常温的受压性能试验研究[J].工业建筑,2016,46(1):130-133+196.
[7] 时旭东, 马驰, 张天申, 等. 不同强度等级混凝土-190℃时受压强度性能试验研究[J].工程力学,2017,34(3):61-67.
[8] 戎贤,申成成,张健新.高强钢筋混凝土柱轴心受压承载力可靠度研究[J].世界地震工程,2019,35(3):21-27.
[9] 中国建筑科学研究院. GB50010-2010.混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
[10] 中国建筑科学研究院. GB50153-2008.工程结构可靠性设计统一标准[S].北京:中国建筑工业出版社,2008.
[11] 李会杰,谢剑.超低温环境下钢筋与混凝土的粘结性能[J].工程力学,2011,28(S1):80-84.
[12] 蔡斌,武安盛,赵良龙.碳纤维加固大偏心受压柱承载力可靠性[J].混凝土,2018(2):9-12.
[13] 李功文,李元齐.冷弯中厚壁轴压方矩形钢管柱抗震可靠度分析[J].同济大学学报(自然科学版),2018,46(8):1003-1010.

相似文献/References:

[1]熊韧,曹海印,王焱清,等.非牛顿润滑静压轴承的节流器流量方程修正[J].湖北工业大学学报,2019,34(5):6.
 XIONG Ren,CAO Haiyin,WANG Yanqing,et al.Modified restrictor flow equations of hydrostatic bearings ubricated by non-Newtonian fluids[J].,2019,34(4):6.
[2]王照远,曹 民,王 毅,等. 场景与数据双驱动的隧道图像拼接方法[J].湖北工业大学学报,2020,(4):11.
 WANG Zhaoyuan,CAO Min,WANG Yi,et al. Tunnel Image Stitching Method based on Scene and Data[J].,2020,(4):11.
[3]潘 健,梁佳成,陈凤娇,等. 单电流闭环多重PR控制的LCL型逆变器[J].湖北工业大学学报,2020,(4):16.
 PAN Jian,LIANG Jiacheng,CHEN Fengjiao,et al. Design of LCL Grid Connected Inverter based on Single Closed Loop Control and Multiple PR Controllers[J].,2020,(4):16.
[4]王晓光,赵 萌,文益雪,等. 定子闭口槽结构对永磁电机齿槽转矩影响分析[J].湖北工业大学学报,2020,(4):25.
 WANG Xiaoguang,ZHAO Meng,WEN Yixue,et al. Study on Cogging Torque and Vibration Noise of Permanent Magnet Motor with Segmental Stator and Closed-Slot[J].,2020,(4):25.
[5]宇 卫,凃玲英,陈 健. 风电场集中接入对集电线电流保护的影响[J].湖北工业大学学报,2020,(4):29.
 YU Wei,TU Lingying,CHEN Jian. Effect of the Collective Line Current Protection when Wind Farms are Centralized Accessed to the Power System[J].,2020,(4):29.
[6]廖政斌,王泽飞,祝 珊. 二惯量系统谐振在线抑制及相位补偿[J].湖北工业大学学报,2020,(4):34.
 LIAO Zhengbin,WANG Zefei,ZHU Shan. Online Resonance Suppression and Phase Compensation for Double Inertia System[J].,2020,(4):34.
[7]王 欣,游 颖,姜天翔,等. 面向3D打印过程的产品工艺设计和优化[J].湖北工业大学学报,2020,(4):39.
 WANG Xin,YOU Ying,JIANG Tianxiang,et al. Product Process Design and Optimization for 3D Printing Processes[J].,2020,(4):39.
[8]冉晶晶,文 红,罗雅梅,等. 全自动样品前处理平台及其控制系统[J].湖北工业大学学报,2020,(4):43.
 RAN Jingjing,WEN Hong,LUO Yamei,et al. Research on Automatic Sample Preprocessing Platform and its Control System[J].,2020,(4):43.
[9]杨 磊,马志艳,石 敏,等. 基于模糊PID的小型冷库过热度控制方法[J].湖北工业大学学报,2020,(4):43.
 YANG Lei,MA Zhiyan,SHI Min,et al. Research on Superheat Control Method of Small Cold Storage based on Fuzzy PID[J].,2020,(4):43.
[10]黄 晶,周细枝,周业望. 动态注塑成型模具的设计与实验研究[J].湖北工业大学学报,2020,(4):52.
 HUANG Jing,ZHOU Xizhi,ZHOU Yewang. Design and Experimental Study of Dynamic Injection Molding[J].,2020,(4):52.
[11]方昊天,李 扬. 超低温下轴拉钢混构件裂缝控制可靠度分析[J].湖北工业大学学报,2021,(1):74.
 FANG Haotian,LI Yang. Reliability Analysis of the Maximum Crack of Reinforced Concrete Members under Axial Tension under Ultra-low Temperature[J].,2021,(4):74.
[12]严泽华,李 扬,方昊天. 超低温下钢筋混凝土梁受弯挠度可靠度分析[J].湖北工业大学学报,2022,(4):81.
 YAN Zehua,LI Yang,FANG Haotian. Reliability Analysis of Bending Deflection of Reinforced Concrete Beams under Ultra-low Temperature[J].,2022,(4):81.

备注/Memo

备注/Memo:
[收稿日期] 2021-06-29
[基金项目] 国家自然科学基金(51508171);湖北省自然科学基金(2020CFB860);湖北省桥梁安全监控技术及装备工程技术研究中心开放基金(QLZX2014001)
[第一作者] 刘 威(1996-),男,江西九江人,湖北工业大学硕士研究生,研究方向为超低温混凝土构件力学性能和可靠度
[通信作者] 李 扬(1986-),男,宁夏石嘴山人,工学博士,湖北工业大学副教授,研究方向为极端环境工程结构可靠性
更新日期/Last Update: 2022-08-29