[1]贺忠尉,向 勇,李大虎,等. 富水电地区电网低频振荡风险抑制策略[J].湖北工业大学学报,2021,(1):47-53.
 HE Zhongwei,XIANG Yong,LI Dahu,et al. Suppression Strategy of Low Frequency Oscillation Risk in Power Grid of Rich Hydropower Area[J].,2021,(1):47-53.
点击复制

 富水电地区电网低频振荡风险抑制策略()
分享到:

《湖北工业大学学报》[ISSN:1003-4684/CN:42-1752/Z]

卷:
期数:
2021年第1期
页码:
47-53
栏目:
湖北工业大学学报
出版日期:
2021-02-18

文章信息/Info

Title:
 Suppression Strategy of Low Frequency Oscillation Risk in Power Grid of Rich Hydropower Area
文章编号:
1003-4684(2021)01-0047-07
作者:
 贺忠尉1 向 勇1李大虎23袁志军2黄文涛2何 俊2
1 国网湖北省电力有限公司恩施供电公司, 湖北 恩施 445000;
2 湖北工业大学电气与电子工程学院, 湖北 武汉 430068;
3 国家电网湖北省电力有限公司,湖北 武汉 430077, 湖北 武汉 430068
Author(s):
 HE Zhongwei1XIANG Yong1LI Dahu23YUAN Zhijun2HUANG Wentao2HE Jun2
1 Enshi Power Supply Company,State Grid Hubei Electric Power Company,Enshi 445000,China;
2 School of Electrical and Electronic Engineering, Hubei Univ. of Tech., Wuhan 430068, China;
3 State Grid Hubei Electric Power Co.,Wuhan 430077,China
关键词:
 低频振荡 电力系统 抑制策略 动态稳定 影响机理
Keywords:
 low frequency oscillation power system suppression strategy dynamic stability influence mechanism
分类号:
TM712
文献标志码:
A
摘要:
 富水电地区电网,水电、风电等新能源电源众多,电网低频振荡特性复杂。针对这一情况研究了电网低频振荡影响机理,包括电网结构和运行方式对电力系统动态稳定水平的关联性。另外,通过菲利普[CD*2/3]海富隆模型推导出机组参数对系统振荡阻尼影响机理,并提出了基于粒子群人工智能算法的富水电地区电网PSS参数优化方法。以恩施电网为例,仿真验证了采用新方法对恩施地区水电机组PSS参数进行优化后,可显著抑制低频振荡风险。
Abstract:
 There are many new energy sources in rich hydropower area, such as hydropower, wind power and so on, and the low frequency oscillation characteristics of power grid are complex. This paper studies the influence mechanism of low frequency oscillation, including the correlation between power network structure and operation mode on the dynamic stability level of power system. Furthermore, the influence mechanism on system oscillation damping is deduced by Phillips-Heffron model, and the optimization method of power grid PSS parameters based on PSO is proposed. Based on the example of Enshi Power Grid, the PSS parameters of the hydropower units in Enshi area are optimized by the method proposed in this paper, which has remarkable effect on suppressing the risk of low frequency oscillation.

参考文献/References:

[1] 余希瑞,周林,郭珂,等. 含新能源发电接入的电力系统低频振荡阻尼控制研究综述[J]. 中国电机工程学报, 2017, 37(21): 6278-6290.
[2] 程志勇,路广才,竺炜.周期性负荷扰动下电网及弹簧网强迫功率振荡分析[J/OL].电测与仪表:1-10[2020-09-14].http://kns.cnki.net/kcms/detail/23.1202.TH.20200803.1605.026.html.
[3] 张程,金涛. 基于ISPM和SDM-Prony算法的电力系统低频振荡模式辨识[J]. 电网技术, 2016, 40(4): 1209-1216.
[4] 张虹,王迎丽,勇天泽,等. 基于SVMD和能量转移SR-MLS反演识别技术的低频振荡信号特征辨识[J]. 高电压技术, 2020, 46(5): 1682-1692.
[5] 顾丽鸿,周孝信,严剑峰,等. 特高压联网区域实时小干扰稳定分析策略[J]. 中国电机工程学报, 2010, 30(13): 1-7.
[6] Shu Y, Zhou X, Li W. Analysis of low frequency oscillation and source location in Power Systems[J]. Csee Journal of Power and Energy Systems, 2018, 4(1): 58-66.
[7] Wang B,Sun K. Location methods of oscillation sources in Power Systems: a survey[J. Journal of Modern Power Systems and Clean Energy, 2017, 5(2): 15.
[8] 游广增,徐政,刘昇,等. 小水电富集电网的柔性直流异步联网方案研究[J]. 电网技术, 2016, 40(4): 1059-1065.
[9] 李伟,肖湘宁,郭琦. 云广特高压直流送端孤岛运行超低频振荡与措施[J]. 电力系统自动化, 2018, 42(16): 161-166, 256-258.
[10] 李传栋. 抑制区间低频振荡的电力系统稳定器设计[J]. 电力系统及其自动化学报, 2018, 30(5): 134-138.
[11] 陈刚,丁理杰,李旻,等. 异步联网后西南电网安全稳定特性分析[J]. 电力系统保护与控制, 2018, 46(7): 76-82.
[12] 吴峰,鲁晓帆,陈维荣,等. 电力系统稳定器参数优化的研究[J]. 电力系统保护与控制, 2010, 38(5): 29-33, 44.
[13] Heffron W G, Phillips R A. Effect of a modern amplidyne voltage regulator on underexcited operation of large turbine generators[J]. in Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 1952, 71(3): 692-697.
[14] 方思立, 朱方. 电力系统稳定器的原理及其应用[M]. 北京:中国电力出版社, 1996.
[15] Kundur P. Power system stability and control[M]. New York: Mc Graw-hill, 1994.
[16] 孟杰. 三区域互联大电网低频振荡研究[D]. 北京:华北电力大学, 2014.
[17] 景乾明,韩自奋,张彦凯,等.基于改进粒子群算法的风电火电联合调度方法[J].电工技术,2019(11):33-36.
[18] 潘晓杰,张立伟,张文朝,等. 基于飞蛾扑火优化算法的多运行方式电力系统稳定器参数协调优化方法[J]. 电网技术, 2020, 44(8): 3038-3046.

相似文献/References:

[1]熊韧,曹海印,王焱清,等.非牛顿润滑静压轴承的节流器流量方程修正[J].湖北工业大学学报,2019,34(5):6.
 XIONG Ren,CAO Haiyin,WANG Yanqing,et al.Modified restrictor flow equations of hydrostatic bearings ubricated by non-Newtonian fluids[J].,2019,34(1):6.
[2]王照远,曹 民,王 毅,等. 场景与数据双驱动的隧道图像拼接方法[J].湖北工业大学学报,2020,(4):11.
 WANG Zhaoyuan,CAO Min,WANG Yi,et al. Tunnel Image Stitching Method based on Scene and Data[J].,2020,(1):11.
[3]潘 健,梁佳成,陈凤娇,等. 单电流闭环多重PR控制的LCL型逆变器[J].湖北工业大学学报,2020,(4):16.
 PAN Jian,LIANG Jiacheng,CHEN Fengjiao,et al. Design of LCL Grid Connected Inverter based on Single Closed Loop Control and Multiple PR Controllers[J].,2020,(1):16.
[4]王晓光,赵 萌,文益雪,等. 定子闭口槽结构对永磁电机齿槽转矩影响分析[J].湖北工业大学学报,2020,(4):25.
 WANG Xiaoguang,ZHAO Meng,WEN Yixue,et al. Study on Cogging Torque and Vibration Noise of Permanent Magnet Motor with Segmental Stator and Closed-Slot[J].,2020,(1):25.
[5]宇 卫,凃玲英,陈 健. 风电场集中接入对集电线电流保护的影响[J].湖北工业大学学报,2020,(4):29.
 YU Wei,TU Lingying,CHEN Jian. Effect of the Collective Line Current Protection when Wind Farms are Centralized Accessed to the Power System[J].,2020,(1):29.
[6]廖政斌,王泽飞,祝 珊. 二惯量系统谐振在线抑制及相位补偿[J].湖北工业大学学报,2020,(4):34.
 LIAO Zhengbin,WANG Zefei,ZHU Shan. Online Resonance Suppression and Phase Compensation for Double Inertia System[J].,2020,(1):34.
[7]王 欣,游 颖,姜天翔,等. 面向3D打印过程的产品工艺设计和优化[J].湖北工业大学学报,2020,(4):39.
 WANG Xin,YOU Ying,JIANG Tianxiang,et al. Product Process Design and Optimization for 3D Printing Processes[J].,2020,(1):39.
[8]冉晶晶,文 红,罗雅梅,等. 全自动样品前处理平台及其控制系统[J].湖北工业大学学报,2020,(4):43.
 RAN Jingjing,WEN Hong,LUO Yamei,et al. Research on Automatic Sample Preprocessing Platform and its Control System[J].,2020,(1):43.
[9]杨 磊,马志艳,石 敏,等. 基于模糊PID的小型冷库过热度控制方法[J].湖北工业大学学报,2020,(4):43.
 YANG Lei,MA Zhiyan,SHI Min,et al. Research on Superheat Control Method of Small Cold Storage based on Fuzzy PID[J].,2020,(1):43.
[10]黄 晶,周细枝,周业望. 动态注塑成型模具的设计与实验研究[J].湖北工业大学学报,2020,(4):52.
 HUANG Jing,ZHOU Xizhi,ZHOU Yewang. Design and Experimental Study of Dynamic Injection Molding[J].,2020,(1):52.

备注/Memo

备注/Memo:
[收稿日期] 2020-10-17
[第一作者] 贺忠尉(1986-), 男, 湖北恩施人,国家电网高级工程师,研究方向为电力系统运行与控制
[通信作者] 袁志军(1997-), 男, 重庆荣昌人,湖北工业大学硕士研究生,研究方向为电力系统运行与控制
更新日期/Last Update: 2021-02-19